Monthly Archives: October 2018

Cybercrime-as-a-Service: No End in Sight

Cybercrime is easy and rewarding, making it a perfect arena for criminals everywhere. Over the past 20 years, cybercrime has become a mature industry estimated to produce more than $1 trillion in annual revenues. From products like exploit kits and custom malware to services like botnet rentals and ransomware distribution, the breadth of cybercrime offerings has never been greater. The result: more, and more serious, forms of cybercrime. New tools and platforms are more accessible than ever before to those who lack advanced technical skills, enabling scores of new actors to hop aboard the cybercrime bandwagon. Meanwhile, more experienced criminals can develop more specialized skills in the knowledge that they can locate others on the darknet who can complement their services and work together with them to come up with new and better criminal tools and techniques. Line Between Illicit and Legitimate E-Commerce Is Blurring The cybercrime ecosystem has evolved to welcome both new actors and new scrutiny. The threat of prosecution has pushed most cybercrime activities onto the darknet, where the anonymity of Tor and Bitcoin protects the bad guys from being easily identified. Trust is rare in these communities, so some markets are implementing escrow payments to make high-risk transactions easier; some sellers even offer support services and money-back guarantees on their work and products. The markets have also become fractured, as the pro criminals restrict themselves to highly selective discussion boards to limit the threat from police and fraudsters. Nevertheless, a burgeoning cybercrime market has sprung from these hidden places to offer everything from product development to technical support, distribution, quality assurance, and even help desks. Many cybercriminals rely on the Tor network to stay hidden. Tor — The Onion Router — allows users to cruise the Internet anonymously by encrypting their activities and then routing it through multiple random relays on its way to its destination. This circuitous process renders it nearly impossible for law enforcement to track users or determine the identities of visitors to certain black-market sites. From Niche to Mass Market In 2015, the UK National Cyber Crime Unit’s deputy director stated during a panel discussion that investigators believed that the bulk of the cybercrime-as-a-service economy was based on the efforts of only 100 to 200 people who profit handsomely from their involvement. Carbon Black’s research discovered that the darknet’s marketplace for ransomware is growing at a staggering 2,500% per annum, and that some of the criminals can generate over $100,000 a year selling ransomware kits alone. That’s more than twice the annual salary of a software developer in Eastern Europe, where many of these criminals operate. There are plenty of ways for a cybercriminal to rake in the cash without ever perpetrating “traditional” cybercrime like financial fraud or identity theft. The first way is something called research-as-a-service, where individuals work to provide the “raw materials” — such as selling knowledge of system vulnerabilities to malware developers — for future criminal activities. The sale of software exploits has captured much attention recently, as the ShadowBrokers and other groups have introduced controversial subscription programs that give clients access to unpatched system vulnerabilities. Zero-Day Exploits, Ransomware, and DDoS Extortion Are Bestsellers The number of discovered zero-day exploits — weaknesses in code that had been previously undetected by the product’s vendor — has dropped steadily since 2014, according to Symantec’s 2018 Internet Security Threat Report, thanks in part to an increase in “bug bounty” programs that encourage and incentivize the legal disclosure of vulnerabilities. In turn, this has led to an increase in price for the vulnerabilities that do get discovered, with some of the most valuable being sold for more than $100,000 in one of the many darknet marketplaces catering to exploit sales, as highlighted in related a blog post on TechRepublic. Other cybercrime actors sell email databases to simplify future cybercrime campaigns, as was the case in 2016 when 3 billion Yahoo accounts were sold to a handful of spammers for $300,000 each. Exploit kits are another popular product on the darknet. They provide inexperienced cybercriminals with the tools they need to break into a wide range of systems. However, Europol suggests that the popularity of exploit kits has fallen over the past 12 months as the top products have been eliminated and their replacements have failed to offer a comparable sophistication or popularity. Europol also notes that theft through malware was generally becoming less of a threat; instead, today’s cybercriminals prefer ransomware and distributed denial-of-service (DDoS) extortion, which are easier to monetize. Cybercrime Infrastructure-as-a-Service The third way hackers can profit from more sophisticated cybercrime is by providing cybercrime infrastructure-as-a-service. Those in this field are provide the services and infrastructure — including bulletproof hosting and botnet rentals — on which other bad actors rely to do their dirty work. The former helps cybercriminals to put web pages and servers on the Internet without having to worry about takedowns by law enforcement. And cybercriminals can pay for botnet rentals that give them temporary access to a network of infected computers they can use for spam distribution or DDoS attacks, for example. Researchers estimate that a $60-a-day botnet can cause up to $720,000 in damages on victim organizations. The numbers for hackers who control the botnets are also big: the bad guys can produce significant profit margins when they rent their services out to other criminals, as highlighted in a related post. The New Reality Digital services are often the backbone of small and large organizations alike. Whether it’s a small online shop or a behemoth operating a global digital platform, if services are slow or down for hours, the company’s revenue and reputation may be on the line. In the old days, word of mouth circulated slowly, but today bad news can reach millions of people instantly. Using botnets for DDoS attacks is a moneymaker for cybercriminals who extort money from website proprietors by threatening an attack that would destroy their services. The danger posed by Internet of Things (IoT) botnets was shown in 2016 when the massive Mirai IoT botnet attacked the domain name provider Dyn and took down websites like Twitter, Netflix, and CNN in the largest such attack ever seen. Botnet use will probably expand in the coming years as cybercriminals continue to exploit vulnerabilities in IoT devices to create even larger networks. Get used to it: Cybercrime is here to stay. Source: https://www.darkreading.com/endpoint/cybercrime-as-a-service-no-end-in-sight/a/d-id/1333033

Follow this link:
Cybercrime-as-a-Service: No End in Sight

A10 Networks provides cloud, Internet and gaming providers with 1 RU DDoS defense appliance

A10 Networks launched the A10 Thunder 7445 Threat Protection System (Thunder TPS), the performance 1 rack unit (RU) and density of throughput per RU appliance. Now cloud, Internet and gaming providers can protect their infrastructure with A10 DDoS defense while enjoying the cost benefits of 100 GbE networking in the smallest form factor. A10 Network’s Thunder TPS is a DDoS protection solution that offers precision in detecting and mitigating against the full spectrum of DDoS … More ? The post A10 Networks provides cloud, Internet and gaming providers with 1 RU DDoS defense appliance appeared first on Help Net Security .

Read More:
A10 Networks provides cloud, Internet and gaming providers with 1 RU DDoS defense appliance

Has a BOT Network Compromised Your Systems?

BOT networks have surprisingly penetrated many corporate networks around the world. Yet many of the information technology and security operations teams often have difficulty identifying their activity and eliminating them from the network. The term botnet is derived from the combination of the words robot and network. A cybercriminal creates a network of these robots connected together for the purposes of coordinating some large-scale activity, most often to function as a cyberattack tool for cybercriminals. These activities often include the propagation of attacker malware tools, economic gain, or perhaps targeting a debilitating attack upon one or more websites on the internet, effectively harming revenue and reputation for enterprise organizations and online e-tailers. The larger the botnet, the more effective it can be in achieving the desired goal. Botnets spread via malware, often distributed through malicious email, and may also be self-propagating so that they move laterally from your laptop to other workstations and network devices within the network. Alternately, they can infect your laptop when you visit a compromised website, setting in motion a series of malicious events that result in a compromised system (drive-by download) and automatically installing the botnet software unbeknownst to the owner of that system. Very typically, due to a lack of effective cyber defense for both detection and remediation, cybercriminals find undefended internet of things (IoT) devices to be ideal hosts to harbor and hide their botnet malware. These IoT hosts can include the new generation of IoT enabled devices such as smart refrigerators, security cameras, digital video records, network connected access management systems, thermostats, and much more. Enterprise security departments are often surprised to find that their access management systems and security cameras are completely compromised by such botnets. The most common indicator is users complaining that computer programs are running much more slowly. This is an often key warning sign that hidden botnets or other malware are using your computing resources. More subtly, you may notice that your cooling fans are running when you are not actively using your computers or servers. This may be symptomatic of the considerable computational overhead created by botnets heating up the processor boards. Finally, on your Windows endpoint platforms, failure to shut down properly, or at all, or failure to download updates are other key indicators, any of which by themselves may not confirm the presence of a botnet, but together raise the suspicions to a high level. Some of your employees might also see unknown posts placed on their Facebook accounts. This might also be directly related to botnet activity. Cybercriminals can use social media accounts to easily disseminate malicious content. Conceptually, this social media botnet attack is very different than infecting your computer. By infecting your social media account, the botnet can propagate more rapidly across your entire social media account and never has to physically sit on your laptop or other home computers. Botnets usually work through automation set up, of course, by cybercriminals you don’t know. Key symptoms are almost always technology related – not related to insider activity or insider malicious threats. Beyond the symptoms already mentioned above, there are also technical indicators, such as strange processes running under windows, but these are very hard to detect. As quickly as cyber defense automation and tools evolve, so do the tactics, techniques, and procedures of the botnet cyberthieves. Most botnets don’t damage the host computers – most of what they do is degrade your performance and effectively “steal” your computer resources. More dangerous is the damage the cyberattackers can cause by using the botnet to maliciously target other websites. For example, when they launch a denial of service (DDOS) attack. Several best practices can help cut down or eliminate botnet infections and the secondary attacks that may be launched once an attacker has access to your networks through a botnet. These include: Utilize software that filters or cuts down on suspicious email attachments and don’t click on any links which are suspicious; Make sure your operating systems have all patches and updates installed; Keep your antivirus protection up to date – these often have the signatures of known and recent botnet malware components; and Encrypt your data end-to-end (at rest, in use, and in transit) so that an attacker in your network will be unable to make use of it. Source: https://securityboulevard.com/2018/10/has-a-bot-network-compromised-your-systems/

Original post:
Has a BOT Network Compromised Your Systems?

Businesses are becoming main target for cybercriminals, report finds

Cybercrime activity continues to expand in scope and complexity, according to the latest report by cybersecurity firm Malwarebytes, as businesses become the preferred target for crooks throughout Q3. Malware detection on businesses shot up 55% between Q2 and Q3, with the biggest attack vector coming from information-stealing trojans such as the self-propagating Emotet and infamous LokiBot. Criminals have likely ramped up attacks on organizations in an attempt to maximize returns, while consumers have seen significantly less action in Q3, with a mere 5% detection increase over the period. This incline toward a more streamlined campaign, as opposed to the wide nets cast in previous quarters, is due to numerous reasons including businesses failing to patch vulnerabilities, weaponized exploits, and possibly even the implementation of privacy-protective legislation such as GDPR. “There was a very long period where ransomware was the dominant malware against everybody,” said Adam Kujawa, director of Malwarebytes Labs, speaking to The Daily Swig about the quarterly report, Cybercrime tactics and techniques: Q3 2018. “We’ve seen the complete evolution of ransomware to what is really just a few families, and whether we’ll see the same distribution and exposure [of ransomware] that we’ve seen in the past few years is unlikely in my opinion.” GandCrab ransomware, however, which first appeared at the beginning of this year, has matured. New versions were discovered during Q3 as the ransomware variant is expected to remain a viable threat to both consumers and to businesses, which are at higher risk due to GandCrab’s advanced ability to encrypt network drives. But despite a recent report by Europol that highlighted ransomware as the biggest threat in 2018, Kujawa isn’t convinced that these campaigns will stick around in the quarters to come. “There are so many solutions out there that can protect users from ransomware, and there are more people that know what to do if you get hit with it,” he said. “When you compare that to is it a good return investment [for cybercriminals], we don’t think it is anymore. Most of what we’ve seen [in Q3] is information-stealers.” Kujawa points to the banking trojan Emotet, that can spread easily and with a primary intent to steal financial data and carry out disturbed denial of service (DDoS) attacks on infected machines. Businesses, particularly small and medium-sized enterprises with less money invested in cyber defenses, have become valuable targets due to the ease in which trojans like Emotet can spread throughout their networks. Changes in global information systems may also be a contributing factor in the revival of data-theft. “That may very well in part play to things like GDPR where you’ve got this data that is no longer legally allowed to be on a server somewhere protected in Europe,” said Kujawa. “Cybercriminals may be more interested in stealing data like they used to because this stuff is no longer as easy to obtain as it was.” While information-stealers hogged the spotlight, the threat landscape remains diverse – targets are predominately concentrated within Western countries, while the use of exploit kits were found mostly in Asian countries including South Korea. Kujawa also noted that social engineering, such as phishing attacks, remains a successful technique for malicious hackers. He said: “Almost all attacks are distributed through social engineering, that’s still the number one way to get past things like security software, firewalls, and things like that.” “The biggest problem in our industry right now is people not taking it [cybersecurity] seriously enough,” Kujawa added. “At the end of the day we’re never going to win the war on cybercrime with just technology because that’s exactly what the bad guys are using against us.” Source: https://portswigger.net/daily-swig/businesses-are-becoming-main-target-for-cybercriminals-report-finds

Read the original:
Businesses are becoming main target for cybercriminals, report finds

Central planning bureau finds Dutch cybersecurity at high level

Dutch businesses and the public sector are well protected against cybersecurity threats compared to other countries, according to a report from the Central Planning Bureau on the risks for cybersecurity. Dutch websites employ encryption techniques relatively often, and the ISPs take measures to limit the impact of DDoS attacks, the report said. Small and medium-sized businesses are less active than large companies in protecting their activities, employing techniques such as data encryption less often, the CPB found. This creates risks for small business and consumers that could be avoided. The report also found that the Dutch are more often victims of cybercrime than other forms of crime. This implies a high cost for society to ensure cybersecurity. In 2016, already 11 percent of businesses incurred costs due to a hacking attempt. The threat of DDoS attacks will only increase in the coming years due to the growing number of IoT devices. This was already evident in the attacks against Dutch bank websites earlier this year. A further risk is that over half the most important banks in the world use the same DDoS protection service. According to the paper Financieele Dagblad, this supplier is Akamai. The company provides DDoS protection for 16 of the 30 largest banks worldwide. The Dutch banks ABN Amro, ING and Rabobank said they were not dependent on a single provider. The CPB report also found that the often reported shortage of qualified ICT staff is less of a threat than thought. The number of ICT students has risen 50 percent in four years and around 100,000 ICT jobs have been added in the country since 2008. Already 5 percent of all jobs are in ICT. This puts the Netherlands at the top of the pack in Europe, alongside the Nordic countries. Source: https://www.telecompaper.com/news/central-planning-bureau-finds-dutch-cybersecurity-at-high-level–1264818

Taken from:
Central planning bureau finds Dutch cybersecurity at high level

Security automation can help IT teams limit cyberattack risks

Attacks are becoming largely automated forcing security solutions to provide multiple layers of defence. Basic forms of automatioorks and infrastructure secure. Cybersecurity threats have become a grim reality for businesses today. Due to wide-scale digitisation efforts, companies now store customers’ personal and financial information making their systems prime targets for cybercriminals to breach. These kinds of data can easily be sold on the black market. Their rising prices make cyberattacks quite profitable. Companies are also subject to other types of attacks such as ransomware and extortion. Unlike ordinary users, they are the ones likely to spend and pay the ransom in order to avoid downtime or recover critical work products. The FBI estimates an average of 4,000 ransomware attacks daily since 2016. Many of these threats are automated. Malware like Mirai and Reaper have hijacked hundreds of thousands of devices to make them part of botnets capable of carrying out massive distributed denial-of-service (DDoS) attacks on other networks. These malware run using pre-programmed rules that exploit the most common vulnerabilities of network devices. Companies are now under pressure to cope with these threats. Each stolen record costs companies $148 to deal with. A data breach, even to a company holding a few thousand records, can mean a total loss worth hundreds of thousands of dollars. Falling victim to a DDoS attack could also cost larger enterprises at least $2.5 million in damages or downtime. IT teams now have their work cut out for them. Most are already feeling the strain of having to implement further digitisation in the workplace including the adoption of new technologies such as cloud computing, Internet-of-Things (IoT), and big data. Managing security is an added responsibility for them. Fortunately, there are also developments in cybersecurity and IT management automation that could help ease the pressure. Automating security Attacks are becoming largely automated forcing security solutions to provide multiple layers of defence. Basic forms of automation in IT management could already greatly help in keeping networks and infrastructure secure. For example, automated payload deployment and software patching could help keep endpoint software and firmware up-to-date. Outdated software continues to be one of the leading causes of breaches as attackers exploit known vulnerabilities of older software. Patches and updates are designed to plug these holes. Services that provide basic layers of defence such as Cloud Management Suite (CMS) can be used to automate updates and patching. Automation tools can significant boost IT teams’ efficiency and decrease risks especially if enterprises have hundreds of devices connected to their networks. For instance, CMS automatically scans developer releases for software and firmware updates and deploys them to target machines. IT teams can also remotely administer devices over the cloud. They can even secure IoT devices which have now become fashionable in a number of workplaces. The use of cloud-based security services can also automate certain security tasks. Security platforms like Akamai and Imperva, for instance, constantly update their rules and blacklists to mitigate emerging threats. Once these services are integrated to their respective networks, companies are immediately protected from both new and known sources of malicious traffic thanks to updated threat databases. Benefits of automation Here are some of the common benefits of automation. Augments IT teams’ capacity. There is a shortage of capable IT talent in the job market right now which forces companies to make do with limited IT team personnel. Automated solutions help IT teams operate more efficiently and effectively by taking over time-consuming tasks. Using cloud-based services also essentially allow companies to outsource their work and expertise requirement, filling the skills gap in case it exists. Allows IT teams to focus on high-value activities. The time saved through these automation efforts could free up IT teams to allocate their energies to monitoring and other threat mitigation and response tasks. Threats could come from various sources including internal lapses so IT teams even have to take on the task of educating fellow staff concerning best practices in security. Minimises risk of human error. Automation can also help minimise the possibility of injecting human error into security tasks. Phishing emails, which try to trick recipients into clicking links to malware, are among the common ways office networks get compromised. Phishing emails are becoming more sophisticated making manual reviews more challenging. Automated tools could easily weed out such emails from company servers. Improvements needed Unlike in other areas, security automation is only starting to gain traction meaning there are still kinks that have to be ironed out. For instance, it is possible for automated solutions to be too stringent. Firewalls might block legitimate traffic and threat detection mechanisms might report back false positives. Such episodes could hamper user experience and productivity. Tasks such as endpoint management, monitoring, and response could also benefit from orchestration. Many of the available services are currently offered by different providers. Integrations across these services are limited. Having an orchestration layer that could merge these services into customisable workflows would be ideal since companies and organisations typically have their own way of doing things. Giving IT teams a fighting chance IT teams must be able to hold their ground against the rampant threats they face. Most threats are now automated, so automating security would give IT teams a fighting chance to cope with these challenges. While no system is full-proof yet, automation frees IT teams from typical tedious tasks so they can then refocus their energies towards other high-value activities. Having more ways to mitigate risks empowers IT teams to be better guardians of companies’ IT data and resources. Source: https://www.itproportal.com/features/security-automation-can-help-it-teams-limit-cyberattack-risks/

Read More:
Security automation can help IT teams limit cyberattack risks

Naming & Shaming Web Polluters: Xiongmai

What do we do with a company that regularly pumps metric tons of virtual toxic sludge onto the Internet and yet refuses to clean up their act? If ever there were a technology giant that deserved to be named and shamed for polluting the Web, it is Xiongmai — a Chinese maker of electronic parts that power a huge percentage of cheap digital video recorders (DVRs) and Internet-connected security cameras. In late 2016, the world witnessed the sheer disruptive power of Mirai, a powerful botnet strain fueled by Internet of Things (IoT) devices like DVRs and IP cameras that were put online with factory-default passwords and other poor security settings. Security experts soon discovered that a majority of Mirai-infected devices were chiefly composed of components made by Xiongmai (a.k.a. Hangzhou Xiongmai Technology Co., Ltd. ) and a handful of other Chinese tech firms that seemed to have a history of placing product market share and price above security. Since then, two of those firms — Huawei and Dahua — have taken steps to increase the security of their IoT products out-of-the-box. But Xiongmai — despite repeated warnings from researchers about deep-seated vulnerabilities in its hardware — has continued to ignore such warnings and to ship massively insecure hardware and software for use in products that are white-labeled and sold by more than 100 third-party vendors. On Tuesday, Austrian security firm SEC Consult released the results of extensive research into multiple, lingering and serious security holes in Xiongmai’s hardware. SEC Consult said it began the process of working with Xiongmai on these problems back in March 2018, but that it finally published its research after it became clear that Xiongmai wasn’t going to address any of the problems. “Although Xiongmai had seven months notice, they have not fixed any of the issues,” the researchers wrote in a blog post published today. “The conversation with them over the past months has shown that security is just not a priority to them at all.” PROBLEM TO PROBLEM A core part of the problem is the peer-to-peer (P2P) communications component called “ XMEye ” that ships with all Xiongmai devices and automatically connects them to a cloud network run by Xiongmai. The P2P feature is designed so that consumers can access their DVRs or security cameras remotely anywhere in the world and without having to configure anything. The various business lines of Xiongmai. Source: xiongmaitech.com To access a Xiongmai device via the P2P network, one must know the Unique ID (UID) assigned to each device. The UID is essentially derived in an easily reproducible way using the device’s built-in MAC address (a string of numbers and letters, such as 68ab8124db83c8db). Electronics firms are assigned ranges of MAC address that they may use, but SEC Consult discovered that Xiongmai for some reason actually uses MAC address ranges assigned to a number of other companies, including tech giant Cisco Systems, German printing press maker Koenig & Bauer AG, and Swiss chemical analysis firm Metrohm AG. SEC Consult learned that it was trivial to find Xiongmai devices simply by computing all possible ranges of UIDs for each range of MAC addresses, and then scanning Xiongmai’s public cloud for XMEye-enabled devices. Based on scanning just two percent of the available ranges, SEC Consult conservatively estimates there are around 9 million Xiongmai P2P devices online. [For the record, KrebsOnSecurity has long advised buyers of IoT devices to avoid those advertise P2P capabilities for just this reason. The Xiongmai debacle is yet another example of why this remains solid advice]. BLANK TO BANK While one still needs to provide a username and password to remotely access XMEye devices via this method, SEC Consult notes that the default password of the all-powerful administrative user (username “admin”) is blank (i.e, no password). The admin account can be used to do anything to the device, such as changing its settings or uploading software — including malware like Mirai. And because users are not required to set a secure password in the initial setup phase, it is likely that a large number of devices are accessible via these default credentials. The raw, unbranded electronic components of an IP camera produced by Xiongmai. Even if a customer has changed the default admin password, SEC Consult discovered there is an undocumented user with the name “default,” whose password is “tluafed” (default in reverse). While this user account can’t change system settings, it is still able to view any video streams. Normally, hardware devices are secured against unauthorized software updates by requiring that any new software pushed to the devices be digitally signed with a secret cryptographic key that is held only by the hardware or software maker. However, XMEye-enabled devices have no such protections. In fact, the researchers found it was trivial to set up a system that mimics the XMEye cloud and push malicious firmware updates to any device. Worse still, unlike with the Mirai malware — which gets permanently wiped from memory when an infected device powers off or is rebooted — the update method devised by SEC Consult makes it so that any software uploaded survives a reboot. CAN XIONGMAI REALLY BE THAT BAD? In the wake of the Mirai botnet’s emergence in 2016 and the subsequent record denial-of-service attacks that brought down chunks of the Internet at a time (including this Web site and my DDoS protection provider at times), multiple security firms said Xiongmai’s insecure products were a huge contributor to the problem. Among the company’s strongest critics was New York City-based security firm Flashpoint, which pointed out that even basic security features built into Xiongmai’s hardware had completely failed at basic tasks. For example, Flashpoint’s analysts discovered that the login page for a camera or DVR running Xiongmai hardware and software could be bypassed just by navigating to a page called “DVR.htm” prior to login. Flashpoint’s researchers also found that any changes to passwords for various user accounts accessible via the Web administration page for Xiongmai products did nothing to change passwords for accounts that were hard-coded into these devices and accessible only via more obscure, command-line communications interfaces like Telnet and SSH. Not long after Xiongmai was publicly shamed for failing to fix obvious security weaknesses that helped contribute to the spread of Mirai and related IoT botnets, Xiongmai lashed out at multiple security firms and journalists, promising to sue its critics for defamation (it never followed through on that threat, as far as I can tell). At the same time, Xiongmai promised that it would be issuing a product recall on millions of devices to ensure they were not deployed with insecure settings and software. But according to Flashpoint’s Zach Wikholm , Xiongmai never followed through with the recall, either. Rather, it was all a way for the company to save face publicly and with its business partners. “This company said they were going to do a product recall, but it looks like they never got around to it,” Wikholm said. “They were just trying to cover up and keep moving.” Wikholm said Flashpoint discovered a number of additional glaring vulnerabilities in Xiongmai’s hardware and software that left them wide open to takeover by malicious hackers, and that several of those weaknesses still exist in the company’s core product line. “We could have kept releasing our findings, but it just got really difficult to keep doing that because Xiongmai wouldn’t fix them and it would only make it easier for people to compromise these devices,” Wikholm said. The Flashpoint analyst said he believes SEC Consult’s estimates of the number of vulnerable Xiongmai devices to be extremely conservative. “Nine million devices sounds quite low because these guys hold 25 percent of the world’s DVR market,” to say nothing of the company’s share in the market for cheapo IP cameras, Wikholm said. What’s more, he said, Xiongmai has turned a deaf ear to reports about dangerous security holes across its product lines principally because it doesn’t answer directly to customers who purchase the gear. “The only reason they’ve maintained this level of [not caring] is they’ve been in this market for a long time and established very strong regional sales channels to dozens of third-party companies,” that ultimately rebrand Xiongmai’s products as their own, he said. Also, the typical consumer of cheap electronics powered by Xiongmai’s kit don’t really care how easily these devices can be commandeered by cybercriminals, Wikholm observed. “They just want a security system around their house or business that doesn’t cost an arm and leg, and Xiongmai is by far the biggest player in that space,” he said. “Most companies at least have some sort of incentive to make things better when faced with public pressure. But they don’t seem to have that drive.” A PHANTOM MENACE SEC Consult concluded its technical advisory about the security flaws by saying Xiongmai “ does not provide any mitigations and hence it is recommended not to use any products associated with the XMeye P2P Cloud until all of the identified security issues have been fixed and a thorough security analysis has been performed by professionals.” While this may sound easy enough, acting on that advice is difficult in practice because very few devices made with Xiongmai’s deeply flawed hardware and software advertise that fact on the label or product name. Rather, the components that Xiongmai makes are sold downstream to vendors who then use it in their own products and slap on a label with their own brand name. How many vendors? It’s difficult to say for sure, but a search on the term XMEye via the e-commerce sites where Xiongmai’s white-labeled products typically are sold (Amazon, Aliexpress.com, Homedepot.com and Walmart) reveals more than 100 companies that you’ve probably never heard of which brand Xiongmai’s hardware and software as their own.  That list is available here (PDF) and is also pasted at the conclusion of this post for the benefit of search engines. SEC Consult’s technical advisory about their findings lists a number of indicators that system and network administrators can use to quickly determine whether any of these vulnerable P2P Xiongmai devices happen to be on your network. For end users concerned about this, one way of fingerprinting Xiongmai devices is to search Amazon.com, aliexpress.com, walmart.com and other online merchants for the brand on the side of your device and the term “XMEye.” If you get a hit, chances are excellent you’ve got a device built on Xiongmai’s technology. Another option: open a browser and navigate to the local Internet address of your device. If you have one of these devices on your local network, the login page should look like the one below: The administrative login screen for IoT devices powered by Xiongmai’s software and hardware. Another giveaway on virtually all Xiongmai devices is pasting “http://IP/err.htm” into a browser address bar should display the following error message (where IP= the local IP address of the device): Ironically, even the error page for Xiongmai devices contains errors. According to SEC Consult, Xiongmai’s electronics and hardware make up the guts of IP cameras and DVRs marketed and sold under the company names below. What’s most remarkable about many of the companies listed below is that about half of them don’t even have their own Web sites, and instead simply rely on direct-to-consumer product listings at Amazon.com or other e-commerce outlets. Among those that do sell Xiongmai’s products directly via the Web, very few of them seem to even offer secure (https://) Web sites. SEC Consult’s blog post about their findings has more technical details, as does the security advisory they released today. In response to questions about the SEC Consult reports, Xiongmai said it is now using a new encryption method to generate the UID for its XMEye devices, and will not longer be relying on MAC addresses. Xiongmai also said users will be asked to change a devices default username and password when they use the XMEye Internet Explorer plugin or mobile app. The company also said it had removed the “default” account in firmware versions after August 2018. It also disputed SEC Consult’s claims that it doesn’t encrypt traffic handled by the devices. In response to criticism that any settings changed by the user in the Web interface will not affect user accounts that are only accessible via telnet, Xiongmai said it was getting ready to delete telnet completely from its devices “soon.” KrebsOnSecurity is unable to validate the veracity of Xiongmai’s claims, but it should be noted that this company has made a number of such claims and promises in the past that never materialized. Johannes Greil, head of SEC Consult Vulnerability Lab, said as far as he could tell none of the proclaimed fixes have materialized. “We are looking forward for Xiongmai to fix the vulnerabilities for new devices as well as all devices in the field,” Greil said. Here’s the current list of companies that white label Xiongmai’s insecure products, according to SEC Consult: 9Trading Abowone AHWVSE ANRAN ASECAM Autoeye AZISHN A-ZONE BESDER/BESDERSEC BESSKY Bestmo BFMore BOAVISION BULWARK CANAVIS CWH DAGRO datocctv DEFEWAY digoo DiySecurityCameraWorld DONPHIA ENKLOV ESAMACT ESCAM EVTEVISION Fayele FLOUREON Funi GADINAN GARUNK HAMROL HAMROLTE Highfly Hiseeu HISVISION HMQC IHOMEGUARD ISSEUSEE iTooner JENNOV Jooan Jshida JUESENWDM JUFENG JZTEK KERUI KKMOON KONLEN Kopda Lenyes LESHP LEVCOECAM LINGSEE LOOSAFE MIEBUL MISECU Nextrend OEM OLOEY OUERTECH QNTSQ SACAM SANNCE SANSCO SecTec Shell film Sifvision/sifsecurityvision smar SMTSEC SSICON SUNBA Sunivision Susikum TECBOX Techage Techege TianAnXun TMEZON TVPSii Unique Vision unitoptek USAFEQLO VOLDRELI Westmile Westshine Wistino Witrue WNK Security Technology WOFEA WOSHIJIA WUSONLUSAN XIAO MA XinAnX xloongx YiiSPO YUCHENG YUNSYE zclever zilnk ZJUXIN zmodo ZRHUNTER Source: https://krebsonsecurity.com/2018/10/naming-shaming-web-polluters-xiongmai/

Excerpt from:
Naming & Shaming Web Polluters: Xiongmai

In Blockchain, There is no Checkmate

During my time as a Chairman of NATO’s Intelligence Committee and advising government and private companies on cybersecurity, I have noticed the same hacker-shaped hole in the industry. For the past 35 years, huge companies, organizations, charities and nation states have succumbed to cyber-criminals. Let me explain why. In a game of chess, you can win by either taking out all of your opponent’s pieces one-by-one, or by trapping the opposing side’s king in a checkmate. This is true of today’s cybersecurity model. One piece, in the wrong place at the wrong time could cost the entire game. Not just that, but any device in a network, whether it be a phone or a smart fridge, is a “king” that can be trapped and cost the integrity of an entire network. In this way, the “king” is a weakness. A weakness that costs companies and countries millions, a weakness that could mean loss of life in the healthcare industry or military systems – indeed, cybersecurity is not a game. Fighting cyber-criminals whilst being constrained by the rules of this chess match means we’ll never win. The centralized model where the hacking of a single device could compromise a network is categorically flawed. This needs to change: we don’t need to play a better game against cyber-criminals, we need to play a different game. Blockchain technology is arguably one of the most significant innovations for decades, and it extends beyond the vestiges of crypto currencies. At its core, the Blockchain is immutable, transparent, encrypted and fragmented (decentralized). As such, Blockchain and cybersecurity seem like a match made in heaven and for the most part, they are. For instance, right now, all the data of our personal or business devices – passwords, applications, files etc. – are stored on a centralized data server. Blockchain decentralizes the systems by distributing ledger data on many systems rather than storing them on one single network. There is no single point of failure, one central database or middleman that could potentially serve as a source of leaks or compromised data. The underpinnings of Blockchain architecture are based on time-stamped cryptographic nodes (the computer and servers that create blocks on a chain). Every time our data is stored or inserted into Blockchain ledgers, a new block is created. Each block has a specific summary of the previous block in the form of a secure digital signature. More sophisticated systems combine Blockchain and AI technologies to confirm each other based on previous signatures. If there is a discrepancy, threat, or a device steps outside of a set of pre-determined rules, the surrounding nodes will flag it for action. Since these blocks are linked in the form of a chain sequence, the timing, order and content of transactions cannot be manipulated. Just like crypto transactions, the Blockchain operates upon a democratic consensus. Any transfer of data would require a majority approval of the network participants; therefore, attackers can only impact a network by getting control of most of the network nodes. However, the nodes are random and the number of them stored on a given network can be in the millions. In the metaphorical game of chess, “the collective” Blockchain has an advantage. Imagine if team hackers could not eliminate a single piece, not a pawn nor rook, unless they could eliminate all million pieces on the entire board at once. If they fail to do that, all of the pieces remain untouchable – including the “king”. There is no checkmate, and no hope for hackers. Even still, since domain editing rights are only verified through nodes, hackers won’t get the right to edit and manipulate the data even after hacking a million of systems. As all transactions are cryptographically linked, the modification or tampering of the data at any given time would alert all those with access to the ledger, exposing the infected dataset near-instantaneously. The Blockchain does not linger or rely on any central point of failure to command changes; that allows for fixes to occur before attacks have time to spread. In other words, hacking a Blockchain with any scale is virtually impossible. For instance, in the case of DDoS attacks that crash large data servers, Blockchain technology would disrupt this completely by decentralizing the DNS (Domain Name Systems) and distributing the content to a greater number of nodes. The idea is clearly an attractive one. It can help save the billions that are being spent on developing arenas in which cybersecurity firms are fighting the hacker’s fight, especially in hard to defend environments. We have already seen a number of companies utilize Blockchain technology to safeguard networks. Companies such as Naoris bring this consensual Blockchain technology and link devices as blocks on a chain so that no single end-point or terminal exists in a silo. Current structures with multiple devices each act as a point of entry for a hacker into the network, however, as we know, the more nodes a network possesses on the Blockchain, the harder it becomes to infiltrate. Therefore, as the network expands and more devices are connected, the network becomes increasingly more resilient. This is only the beginning for Blockchain. As it develops, it’s only going to get smarter and better. New technologies have the potential to provide a robust and effective alternative way of ensuring that we evolve to compete with concerns surrounding our security. With the Blockchain, such concerns can be a thing of the past. Source: https://www.infosecurity-magazine.com/opinions/blockchain-no-checkmate/

Original post:
In Blockchain, There is no Checkmate

DDoS Attacks Target Multiple Games including Final Fantasy XIV, Assassin’s Creed

A set of DDoS attacks plagued a series of gaming publishers including Final Fantasy XIV ’s creator Square Enix and Assassin’s Creed publisher Ubisoft, respectively on the day of the Assassin’s Creed Odyssey launch on Friday. Ubisoft began experiencing connectivity issues around Oct. 4 when the officials first tweeted an alert to users informing them of issues and actual attacks began surfacing around 7:48 am CT on Oct. 5, 2018 and affected Ubisoft games such as  Rainbow Six Siege  and  For Honor. “ ?? We’re currently experiencing a series of DDoS attacks, which unfortunately are a common occurrence for almost all online service providers,” Ubisoft posted on an official forum addressing the incident. “This may impact connections to our games as well as server latency, and we are taking steps to mitigate this issue.” Later that day Square Enix announced that it was also fighting off an attack aimed towards its popular MMORPG,  Final Fantasy XIV although it is unclear if the attacks are connected or not. In response to the high-profile incident, Corero Network Security’s Director of Product Management Sean Newman said it was “somewhat bemusing why some providers of online gaming platforms appear to still accept a certain air of inevitability when it comes to suffering as the result of DDoS attacks,” Newman said. “With solutions available which can protect against DDoS automatically, and in real-time, help is at hand to keep games online, avoid lag, and ensure that player confidence and bottom lines, are preserved,” he continued. Overall, many gamers noted that 2018 has been a relatively peaceful year for the online gaming community compared to previous years that were plauged by rampant DDoS attacks carried out by the Lizard Squad and other threat actors. Source: https://www.scmagazine.com/home/news/ddos-attacks-target-multiple-games-including-final-fantasy-xiv/

See the original post:
DDoS Attacks Target Multiple Games including Final Fantasy XIV, Assassin’s Creed

Acorus Network protects enterprises and service providers from DDoS attacks

Acorus Networks is raising $6 million from Elaia Partners, Partech and Kima Ventures. This funding round will contribute to Acorus Networks’ mission to protect customers whose business activity relies on the Internet, in fields such as banking, e-commerce, gambling, government and healthcare. According to IDC Research’s recent US DDoS Prevention Survey, more than 50% of IT security decision makers admit that their organization had been the victim of DDoS attacks 10 times in the past … More ? The post Acorus Network protects enterprises and service providers from DDoS attacks appeared first on Help Net Security .

See original article:
Acorus Network protects enterprises and service providers from DDoS attacks