Tag Archives: defend against ddos

Mirai creators sentenced to probation after assisting FBI with cyber investigations

Three young men who developed and deployed the original Mirai IoT botnet malware were sentenced on Tuesday in an Alaskan federal court to five years probation – a lenient punishment earned through extensive cooperation with FBI on other cyber investigations. Paras Jha, 22, of Fanwood, N.J.; Josiah White, 21, of Washington, Penn.; and Dalton Norman, 22, of Metairie, La. were also each ordered to pay $127,000 in restitutions and serve 2,500 hours of community service that will require continued collaboration with law enforcement authorities and researchers on cybercrime and cybersecurity matters. A Sept. 18 Wired article citing additional court documents states the three men have already accumulated more than 1,000 hours of community service by lending their expertise to at least a dozen investigations. This reportedly includes efforts to reduce the impact of high-volume distributed denial of service (DDoS) attacks, counter a nation-state-backed APT group, and perhaps undercover work. “All three have made efforts at positive professional and educational development with varying degrees of success, and indeed it was their collective lack of success in those fields that provided some of the motive to engage in the criminal conduct” in the first place, stated a sentencing memorandum filed by U.S. prosecutors on Sept. 11. In recommending a lighter sentence to the court, the document cites “potential grounds for optimism regarding their prospects for rehabilitation and productive engagement in society after being sentenced in these cases. All three have significant employment and educational prospects should they choose to take advantage of them rather than continuing to engage in criminal activity.” Jha could still serve prison time for additional charges filed, in New Jersey, related to a 2016 Mirai-based DDoS attack he launched against Rutgers University, where he had been a student. The three men pleaded guilty in late 2017. White, Jha, and Norman created the botnet in the summer and fall of 2016, recruiting scores of compromised IoT devices – including wireless cameras, routers, and digital video recorders – and using them to flood targets with DDoS traffic. Jha later released Mirai’s source code to evade identification as an author. This action led to others individuals developing numerous versions of the malware, including one that impacted the Domain Name System provider Dyn and disabled many popular websites on Oct. 21, 2016. Other versions have focused focus from DDoS attacks to other illegal activities such as cryptomining. “Cybercrime is a worldwide epidemic that reaches many Alaskans,” said U.S. Attorney Bryan Schroder in a DOJ press release. “The perpetrators count on being technologically one step ahead of law enforcement officials. The plea agreement with the young offenders in this case was a unique opportunity for law enforcement officers, and will give FBI investigators the knowledge and tools they need to stay ahead of cyber criminals around the world.” “The sentences announced today would not have been possible without the cooperation of our partners in international law enforcement and the private sector,” Jeffery Peterson, Special Agent in Charge of FBI’s Anchorage field office, also said in the release. “The FBI is committed to strengthening those relationships and finding innovative ways to counter cybercrime. Cybercriminals often develop their technical skills at a young age. This case demonstrates our commitment to hold criminals accountable while encouraging offenders to choose a different path to apply their skills.” Source: https://www.scmagazine.com/home/news/mirai-creators-sentenced-to-probation-after-assisting-fbi-with-cyber-investigations/

Taken from:
Mirai creators sentenced to probation after assisting FBI with cyber investigations

Hackers behind Mirai botnet could be sentenced to working for the FBIThis comes after more than 18 months of already helping the FBI stop cyberattacks…

This comes after more than 18 months of already helping the FBI stop cyberattacks Three young hackers went from believing they were “untouchable” to helping the FBI stop future cyberattacks. The trio of hackers behind the Mirai botnet — one of the most powerful tools used for cyberattacks — has been working with the FBI for more than a year, according to court documents filed last week. Now the government is recommending they be sentenced to continue assisting the FBI, instead of a maximum five years in prison and a $250,000 fine. “By working with the FBI, the defendants assisted in thwarting potentially devastating cyberattacks and developed concrete strategies for mitigating new attack methods,” US attorneys said in a motion filed Sept. 11. “The information provided by the defendants has been used by members of the cybersecurity community to safeguard US systems and the Internet as a whole.” Originally, a probation officer on the case recommended that all three defendants be sentenced to five years’ probation and 200 hours of community service. Because of the hackers’ help, prosecutors have asked that the community service requirement be bumped up to 2,500 hours, which would include “continued work with the FBI on cybercrime and cybersecurity matters.” The three defendants are set to be sentenced by a federal judge in Alaska. The sentencing plea Tuesday was earlier reported by Wired. Hacker rehab Governments have taken a new approach with young, first-offender hackers, in the hopes of rehabilitating them and recruiting them to help defend against future attacks. The UK offers an alternative called the “cybercrime intervention workshop,” essentially a boot camp for young hackers who have technical talent but poor judgment. The three defendants — Josiah White, Paras Jha and Dalton Norman — were between the ages of 18 and 20 when they created Mirai, originally to take down rival Minecraft servers with distributed denial-of-service attacks. DDoS attacks send massive amounts of traffic to websites that can’t handle the load, with the intention of shutting them down. Mirai took over hundreds of thousands of computers and connected devices like security cameras and DVRs, and directed them for cyberattacks and traffic scams. In one conversation, Jha told White that he was “an untouchable hacker god” while talking about Mirai, according to court documents. The botnet was capable of carrying out some of the largest DDoS attacks ever recorded, including one in 2016 that caused web outages across the internet. The three defendants weren’t behind the massive outage, but instead were selling access to Mirai and making thousands of dollars, according to court documents. Helping the FBI The three hackers pleaded guilty in December, but had been helping the government with cybersecurity for 18 months, even before they were charged. Prosecutors estimated they’ve worked more than 1,000 hours with the FBI — about 25 weeks in a typical workplace. That includes working with FBI agents in Anchorage, Alaska, to find botnets and free hacker-controlled computers, and building tools for the FBI like a cryptocurrency analysis program. In March, the three hackers helped stop the Memcached DDoS attack, a tool that was capable of blasting servers with over a terabyte of traffic to shut them down. “The impact on the stability and resiliency of the broader Internet could have been profound,” US attorneys said in a court document. “Due to the rapid work of the defendants, the size and frequency of Memcache DDoS attacks were quickly reduced such that within a matter of weeks, attacks utilizing Memcache were functionally useless.” According to US officials, the three hackers also last year helped significantly reduce the number of DDoS attacks during Christmas, when activity usually spikes. Along with helping the FBI, the three defendants have also worked with cybersecurity companies to identify nation-state hackers and assisted on international investigations. Jha now works for a cybersecurity company in California while also attending school. Dalton has been continuing his work with FBI agents while attending school at the University of New Orleans, and White is working at his family’s business. Prosecutors heavily factored their “immaturity” and “technological sophistication” as part of the decision. “All three have significant employment and educational prospects should they choose to take advantage of them rather than continuing to engage in criminal activity,” the court documents said. Source: https://www.cnet.com/news/hackers-behind-mirai-botnet-could-be-sentenced-to-working-for-the-fbi/

Continued here:
Hackers behind Mirai botnet could be sentenced to working for the FBIThis comes after more than 18 months of already helping the FBI stop cyberattacks…

Who’s hacking into UK unis? Spies, research-nickers… or rival gamers living in res hall?

Report fingers students and staff for academic cyber-attacks Who’s hacking into university systems? Here’s a clue from the UK higher education tech crew at Jisc: the attacks drop dramatically during summer break. A new study from Jisc (formerly the Joint Information Systems Committee) has suggested that rather than state-backed baddies or common criminals looking to siphon off academic research and personal information, staff or students are often the culprits in attacks against UK higher education institutions. The non-profit body, which provides among other things internet connectivity to universities, analysed 850 attacks in the 2017-18 academic year and found a consistent pattern that occurred during term time and the UK working day. Holidays brought with them a sharp reduction in attacks, from a peak 60-plus incidents a week during periods of the autumn term to a low of just one a week at times in the summer. It acknowledged that part of the virtual halt in summer may be down to cops and Feds cracking down on black hat distributed denial-of-service tools in the months prior, however. Jisc is perhaps better known among Reg readers for providing the Janet network to UK education and research institutions. Its data covered cyber-attacks against almost 190 universities and colleges and focused on denial-of-service and other large-scale infosec hits rather than phishing frauds and malware. Staff and students with a grudge or out to cause mischief are more credible suspects in much of this rather than external hackers or spies. More sophisticated hackers might be inclined to use DDoS as some sort of smokescreen. In a blog post, Jisc security operations centre head John Chapman admitted some of the evidence suggesting staff and students might be behind DDoS attacks is circumstantial. However, he pointed out evidence from law enforcement and detected cyber assaults supported this theory. For example, a four-day DDoS attack the unit was mitigating against was traced back to a university hall of residence – and turned out to be the result of a feud between two rival gamers. Whoever might be behind them, the number of incidents is growing. Attacks are up 42 per cent to reach this year’s 850; the previous academic year (2016-17) witnessed less than 600 attacks against fewer than 140 institutions. Matt Lock, director of solutions engineers at Varonis, said: “This report is another reminder that some of the biggest threats facing organisations today do not involve some hoodie-wearing, elusive computer genius.” Education is targeted more often than even the finance and retail sectors, according to McAfee research (PDF). Nigel Hawthorn, data privacy expert at McAfee, commented in March: “The kind of data held by universities (student records/intellectual property) is a valuable commodity for cyber criminals, so it is crucial that the security and education sectors work together to protect it. Source: https://www.theregister.co.uk/2018/09/17/cyber_attack_uk_universities/

See original article:
Who’s hacking into UK unis? Spies, research-nickers… or rival gamers living in res hall?

DDoS attacks: Students blamed for many university cyber attacks

DDoS attacks against university campuses are more likely in term time. Nation-states and criminal gangs often get the blame for cyber attacks against universities, but a new analysis of campaigns against the education sector suggests that students — or even staff — could be perpetrators of many of these attacks. Attributing cyber attacks is often a difficult task but Jisc, a not-for-profit digital support service for higher education, examined hundreds of DDoS attacks against universities and has come to the conclusion that “clear patterns” show these incidents take place during term-time and during the working day — and dramatically drop when students are on holiday. “This pattern could indicate that attackers are students or staff, or others familiar with the academic cycle. Or perhaps the bad guys simply take holidays at the same time as the education sector,” said John Chapman, head of security operations at Jisc. While the research paper notes that in many cases the reasons behind these DDoS campaigns can only be speculated about, just for fun, for the kudos and to settle grudges are cited as potential reasons. In one case, a DDoS attack against a university network which took place across four nights in a row was found to be specifically targeting halls of residence. In this instance, the attacker was launching an attack in order to disadvantage a rival in online games. The research notes that attacks against universities usually drop off during the summer — when students and staff are away — but that the dip for 2018 started earlier than it did in 2017. “The heat wave weather this year could have been a factor, but it’s more likely due to international law enforcement activity — Operation Power Off took down a ‘stresser’ website at the end of April,” said Chapman. The joint operation by law enforcement agencies around the world took down ‘Webstresser’, a DDoS for hire service which illegally sold kits for overwhelming networks and was, at the time, the world’s largest player in this space. This seemingly led to a downturn in DDoS attacks against universities. But universities ignore more advanced threats “at their peril” said Chapman. “It’s likely that some of these more sophisticated attacks are designed to steal intellectual property, targeting sensitive and valuable information held at universities and research centres.” Despite this, a recent survey by Jisc found that educational establishments weren’t taking cyber attacks seriously, as they weren’t considered a priority issue by many. “When it comes to cyber security, complacency is dangerous. We do everything we can to help keep our members’ safe, but there’s no such thing as a 100% secure network,” said Chapman. Source: https://www.zdnet.com/article/ddos-attacks-students-blamed-for-many-university-cyber-attacks/  

View article:
DDoS attacks: Students blamed for many university cyber attacks

Edinburgh Uni Hit by Major Cyber-Attack

The website of Edinburgh University was still down at the time of writing after the institution suffered a major cyber-attack during its Freshers’ Week. A university spokesman told the Edinburgh Evening News that it has “rigid measures in place” to protect IT systems and data. “Our defenses reacted quickly and no data has been compromised,” he added. “We will continue to work with our internet service provider, [national cybercrime investigators] and with other universities to prevent these network attacks in future.” The main ed.ac.uk site was still down on Thursday morning, nearly 24 hours after the first reports of an attack went online. That would indicate a serious DDoS attack. Jisc, the UK non-profit which runs the super-fast Janet network for research and educational institutions, released a statement claiming that a “number of universities” have been targeted this week and adding that the number of DDoS attacks on them “typically increases at this time of year, when students are enrolling at, or returning to university.” “While Jisc is responsible for protecting connections to the Janet Network for its members (colleges, universities and research centres), members are responsible for protecting their own cyberspace,” it added. “However, Jisc also provides DDoS threat intelligence to its community and provides advice to members affected by cyber-attacks on how to deal with the problem and minimize the impact.” Ironically, Edinburgh University was praised by the government this year for carrying out cutting-edge cybersecurity research. It is one of 14 Academic Centres of Excellence in Cyber Security Research, backed by the £1.9bn National Cyber Security Strategy. DDoS attacks grew by 40% year-on-year in the first six months of 2018, according to new figures from Corero Networks. The security firm claimed that attacks are becoming shorter — with 82% lasting less than 10 minutes — and smaller, with 94% under 5Gbps. However, one in five victims are hit with another attack within 24 hours, the report revealed. Source: https://www.infosecurity-magazine.com/news/edinburgh-uni-hit-by-major-cyber/

View article:
Edinburgh Uni Hit by Major Cyber-Attack

DDoS attacks and mobile fraud are surging in 2018

Two separate reports have detailed the biggest threats to businesses this year Two separate reports have highlighted the mounting threat of DDoS and mobile fraud attacks, demonstrating the shifting security landscape and the need for businesses to adapt their security policies. Corero Network Security’s DDoS report revealed attacks were up 40% year-on-year, with 77% of them lasting ten minutes or less and 63% less than five minutes. Companies that have experienced an attack have a one in five chance of finding themselves under siege less than 24 hours after the first. The most common type of DDoS attack on organisations is low volume strikes, with 4% less than 5Gbps. However, the number of high-volume attacks (over 10Gbps) have more than doubled over the last year, suggesting they will rise in intensity in the coming period. “Organisations are dependent on the Internet as a means to conduct business and deliver consumer/citizen services,” Corero’s CEO Ashley Stephenson said. “Any event that affects this ability to function will have a significant impact on that business. “With Internet resilience coming down to a fraction of a second, it’s easy to see why DDoS attacks are considered one of the most serious threats to Internet availability today resulting in damage to a brand’s reputation, customer trust and revenue.” ThreatMetrix’s investigation into mobile threats revealed that mobile attacks in the US have risen by 44% year-on-year (24% worldwide), as criminals take advantage of mobile usage to complete digital transactions such as mobile banking and purchasing. Additionally, it noted that because 85% of social media and dating site activity happens on mobile, these are becoming targets for hackers. Now, a third of all fraud-related activities originate from mobile devices, which although highlights the need for mobile security, suggests desktop is still the less secure platform. Device spoofing is the biggest threat to financial services, while mule networks and bot attacks are on the rise. ThreatMetrix explained large retailers are the biggest targets as criminals attempt to break into user accounts and steal payment information. “Mobile is quickly becoming the predominant way people access online goods and services, and as a result, organisations need to anticipate that the barrage of mobile attacks will only increase,” said Alisdair Faulkner, Chief Identity Officer at ThreatMetrix. “The good news is that as mobile usage continues to increase, so too does overall customer recognition rates, as mobile apps offer a wealth of techniques to authenticate returning customers with a very high degree of accuracy.” He added that the key vulnerability in the mobile atmosphere is during the app registration and account creation step. To prevent criminals from breaking into the system using this security hole, businesses must use global intelligence that can uncover their true digital identity, with information compiled from the various places customer information is available on. Source: http://www.itpro.co.uk/security/31906/ddos-attacks-and-mobile-fraud-are-surging-in-2018

Read More:
DDoS attacks and mobile fraud are surging in 2018

DDoS attacks are getting even larger

Average DDoS attack is five times stronger this year, compared to the year before. The average DDoS attack is five times stronger this year, compared to the year before, and the biggest DDoS attack is four times stronger than last year’s strongest, according to new reports. Nexusguard’s Q2 2018 Threat Report analysed thousands of DDoS attacks worldwide and came to the conclusion that the average DDoS attack is now bigger than 26 Gbps, and the maximum attack size is now 359 Gbps. IoT botnets are still largely in use, mostly because of the increasing number of IoT-related malware exploits, as well as the huge growth in large-scale DDoS attacks. The report says that CSPs and susceptible operations should ‘enhance their preparedness to maintain their bandwidth, especially if their infrastructure don’t have full redundancy and failover plans in place’. “The biggest zero-day risks can stem from various types of home routers, which attackers can exploit to create expansive DDoS attacks against networks and mission-critical services, resulting in jumbo-sized attacks intended to cripple targets during peak revenue-generating hours,” said Juniman Kasman, chief technology officer for Nexusguard. “Telcos and other communications service providers will need to take extra precautions to guard bandwidth against these supersized attacks to ensure customer service and operations continue uninterrupted.” Universal datagram protocol, or UDP, is the hacker’s favourite attack tool, with more than 31 per cent of all attacks using this approach. This is a connectionless protocol which helps launch mass-generated botnets. Top two sources of these attacks are the US and China. Source: https://www.itproportal.com/news/ddos-attacks-are-getting-even-larger/

Link:
DDoS attacks are getting even larger

DDoS Protection is the Foundation for Application, Site and Data Availability

When we think of DDoS protection, we often think about how to keep our website up and running. While searching for a security solution, you’ll find several options that are similar on the surface. The main difference is whether your organization requires a cloud, on-premise or hybrid solution that combines the best of both worlds. Finding a DDoS mitigation/protection solution seems simple, but there are several things to consider. It’s important to remember that DDoS attacks don’t just cause a website to go down. While the majority do cause a service disruption, 90 percent of the time it does not mean a website is completely unavailable, but rather there is a performance degradation. As a result, organizations need to search for a DDoS solution that can optimize application performance and protect from DDoS attacks. The two functions are natural bedfellows. The other thing we often forget is that most traditional DDoS solutions, whether they are on-premise or in the cloud, cannot protect us from an upstream event or a downstream event. If your carrier is hit with a DDoS attack upstream, your link may be fine but your ability to do anything would be limited. You would not receive any traffic from that pipe. If your infrastructure provider goes down due to a DDoS attack on its key infrastructure, your organization’s website will go down regardless of how well your DDoS solution is working. Many DDoS providers will tell you these are not part of a DDoS strategy. I beg to differ. Finding the Right DDoS Solution DDoS protection was born out of the need to improve availability and guarantee performance.  Today, this is critical. We have become an application-driven world where digital interactions dominate. A bad experience using an app is worse for customer satisfaction and loyalty than an outage.  Most companies are moving into shared infrastructure environments—otherwise known as the “cloud”— where the performance of the underlying infrastructure is no longer controlled by the end user.  Keeping the aforementioned points in mind, here are three key features to consider when looking at modern enterprise DDoS solutions: Data center or host infrastructure rerouting capabilities gives organizations the ability to reroute traffic to secondary data centers or application servers if there is a performance problem caused by something that the traditional DDoS prevention solution cannot negate. This may or may not be caused by a traditional DDoS attack, but either way, it’s important to understand how to mitigate the risk from a denial of service caused by infrastructure failure. Simple-to-use link or host availability solutions offer a unified interface for conducting WAN failover in the event that the upstream provider is compromised. Companies can use BGP, but BGP is complex and rigid. The future needs to be simple and flexible. Infrastructure and application performance optimization is critical. If we can limit the amount of compute-per-application transactions, we can reduce the likelihood that a capacity problem with the underlying architecture can cause an outage. Instead of thinking about just avoiding performance degradation, what if we actually improve the performance SLA while also limiting risk? It’s similar to making the decision to invest your money as opposed to burying it in the ground. Today you can look at buying separate products to accomplish these needs but you are then left with an age old problem: a disparate collection of poorly integrated best-of-breed solutions that don’t work well together. These products should work together as part of a holistic solution where each solution can compensate and enhance the performance of the other and ultimately help improve and ensure application availability, performance and reliability. The goal should be to create a resilient architecture to prevent or limit the impact of DoS and DDoS attacks of any kind. Source: https://securityboulevard.com/2018/09/ddos-protection-is-the-foundation-for-application-site-and-data-availability/

Read this article:
DDoS Protection is the Foundation for Application, Site and Data Availability

A Scoville Heat Scale For Measuring Cybersecurity

The  Scoville Scale  is a measurement chart used to rate the heat of peppers or other spicy foods. It can also can have a useful application for measuring cybersecurity threats. Cyber-threats are also red hot as the human attack surface is projected to reach over 6 billion people by 2022. In addition, cyber-crime damage costs are estimated to reach $6 trillion annually by 2021. The cybersecurity firm RiskIQ states that every minute approximately 1,861 people fall victim to cyber-attacks, while some $1.14 million is stolen. In recognition of these alarming stats, perhaps it would be useful to categorize cyber-threats in a similar scale to the hot peppers we consume. I have provided my own Scoville Scale-like heat characterizations of the cyber threats we are facing below. Data Breaches: According to Juniper Research, over The Next 5 Years, 146 Billion Records Will Be Breached. The 2017 Annual Data Breach Year-end Review (Identity Theft Resource Center) found that 1,946,181,599 of records containing personal and other sensitive data that have been in compromised between Jan. 1, 2017, and March 20, 2018. The true tally of victims is likely much greater as many breaches go unreported. According to the Pew Research Center, a majority of Americans (65%) have already personally experienced a major data breach.  On the Scoville scale, data breaches, by the nature of their growing exponential threat can be easily categorized at a “Ghost Pepper ” level. Malware: According to Forrester Research’s 2017 global security survey, there are 430 million types of malware online—up 40 percent from just three years ago. The Malware Tech Blog cited that 100,000 groups in at least 150 countries and more than 400,000 machines were infected by the Wannacry virus in 2017, at a total cost of around $4 billion. Malware is ubiquitous and we deal with it. It is a steady “Jalepeno Pepper” on the scale. Ransomware:   Cybersecurity Ventures predicts that ransomware damage costs will rise to $11.5 billion in 2019 with an attack occurring every 14 seconds. According to McAfee Lab’s Threat Report covering Q4 2017, eight new malware samples were recorded every second during the final three months of 2017. Cisco finds that Ransomware attacks are growing more than 350 percent annually. Experts estimate that there are more than 125 separate families of ransomware and hackers have become very adept at hiding malicious code. Ransomware is scary and there is reason to panic, seems like a ”Fatali Pepper.” Distributed Denial of Service (DDoS):   In 2016, DDoS attacks were launched against a Domain Name System (DNS) called Dyn. The attack directed thousands of IoT connected devices to overload and take out internet platforms and services.  The attack used a simple exploit of a default password to target home surveillance cameras, and routers. DDoS is like a “Trinidad Pepper” as it can do quick massive damage and stop commerce cold. DDoS is particularly a frightening scenario for the retail, financial. and healthcare communities. Phishing:   Phishing is a tool to infect malware, ransomware, and DDoS. The 2017 Ponemon State of Endpoint Security Risk Report   found that 56% of organizations in a survey of 1,300 IT decision makers identified targeted phishing attacks as their biggest current cybersecurity threat. According to an analysis by Health Information Privacy/Security Alert, 46,000 new phishing sites are created every day. According to Webroot, An average of 1.385 million new, unique phishing sites are created each month. The bottom line it is easy anyone to be fooled by a targeted phish. No one is invulnerable to a crafty spear-phish, especially the C-Suite. On the Scoville Scale, Phishing is prolific, persistent, and often causes harm. I rate it at the “Habanero Pepper” level. Protecting The Internet of Things :   The task of securing IoT is increasingly more difficult as mobility, connectivity and the cyber surface attack space grows. Most analysts conclude that there will be more than 20 billion connected Internet devices by 2020. According to a study conducted in April of 2017 by The Altman Vilandrie & Company, neary half of U.S. firms using The Internet of Things experienced cybersecurity breaches.  Last year, Symantec noted that IoT attacks were up 600 percent. Analysts predict 25 percent of cyber-attacks in 2020 will target IoT environments. Protect IoT can be the “ Carolina Reaper” as everything connected is vulnerable and the consequences can be devastating. Lack of Skilled Cybersecurity Workers : Both the public and private sectors are facing major challenges from a dearth of cybersecurity talent. As companies evolve toward digital business, people with cybersecurity skills are becoming more difficult to find and more expensive for companies to hire and keep . A report out from Cybersecurity Ventures estimates there will be 3.5 million unfilled cybersecurity jobs by 2021. A 2017 research project by the industry analyst firm Enterprise Strategy Group (ESG ) and the Information Systems Security Association (ISSA) found that 70 percent of cybersecurity professionals claimed their organization was impacted by the cybersecurity skills shortage. On the Scoville Scale, I rate the skills shortage as a “Scotch Bonett,”  dangerous but perhaps automation, machine learning and artificial intelligence can ease the pain. Insider Threats: Insider threats can impact a company’s operational capabilities, cause significant financial damages, and harm a reputation. The IBM Cyber Security Index found that 60% of all cyber- attacks were carried out by insiders.  And according to  a recent Accenture HfS Research report 69% of enterprise security executives reported experiencing an attempted theft or corruption of data by insiders over one year. Malicious insider intrusions can involve theft of IP, social engineering; spear-phishing attacks, malware, ransomware, and in some cases sabotage. Often overlooked, insider threats correlate to a “Red Savina Habanero.” Identity Theft : Nearly 60 million Americans have been affected by identity theft, according to a 2018 online survey by The Harris Poll. The reason for the increased rate of identity fraud is clear. As we become more and more connected, the more visible and vulnerable we become to those who want to hack our accounts and steal our identities. We are often enticed via social media or email phishing. Digital fraud and stealing of our identities is all too common and associated closely to data breaches, a “Chocolate Habanero.” Crypto-mining and Theft :  Crypto poses relatively new threats to the cybersecurity ecosystem. Hackers need computing power to find and “mine” for coins and can hijack your computer processor while you are online. Hackers place algorithm scripts on popular websites that people innocently visit.  You might not even know you are being hijacked.  Trend Micro disclosed that Crypto-mining malware detections jumped 956% in the first half of 2018 versus the whole of last year. Also, paying ransomware in crypto currencies seems to be a growing trend. The recent WannaCry and the Petya ransomware attackers demanded payment in bitcoin. On The Scoville Scale, it’s still early for crypto and the threats may evolve but right now a “Tabasco Pepper.” Potential Remedies: Cybersecurity at its core essence is guided by risk management: people, process, policies, and technologies. Nothing is completely invulnerable, but there are some potential remedies that can help us navigate the increasingly malicious cyber threat landscape. Some of these include: Artificial Intelligence and Machine Learning Automation and Adaptive Networks Biometrics and Authentication Technologies Blockchain Cloud Computing Cryptography/Encryption Cyber-hygiene Cyber Insurance Incident Response Plans Information Threat Sharing Managed Security Services Predictive Analytics Quantum-computing and Super-Computing And … Cold Milk The bottom line is that as we try to keep pace with rising cybersecurity threat levels, we are all going to get burned in one way or another. But we can be prepared and resilient to help mitigate the fire. Keeping track of threats on any sale can be useful toward those goals. Chuck Brooks  is the Principal Market Growth Strategist for General Dynamics Mission Systems for Cybersecurity and Emerging Technologies. He is also Adjunct Faculty in Georgetown University’s Graduate Applied Intelligence program. Source: https://www.forbes.com/sites/cognitiveworld/2018/09/05/a-scoville-heat-scale-for-measuring-cybersecurity/#15abda233275

View the original here:
A Scoville Heat Scale For Measuring Cybersecurity

McDreary? The Future of Medical Call Centers & DDoS

As healthcare’s digital transformation continues, security remains a top priority — especially as distributed denial-of-service (DDoS) attacks target the click-to-call features on websites. Click-to-call defines the services that enable patients to immediately call a hospital or clinic directly from a button on their website, either using a traditional phone service or Voice over Internet Protocol (VoIP) technology. This is different from click-to-callback features, which are used for less pressing medical needs, and is an important differentiation when securing hospital communications from DDoS attacks. Because direct click-to-call scenarios use more resources, such as audio streams and interactive voice response (IVR) systems, these types of connections are much easier to effect using an application-layer DDoS attack. When a DDoS attack affects a healthcare system, click-to-call features are often taken fully offline. If this occurs during a health emergency, the implications can mean life or death. However, click-to-call features also offer enhanced and more personalized engagement in a cost-effective manner, so simply removing them could result in delayed care or service abandonment as well as raise the cost of future care. So what’s the best move? Neustar’s 2017 Worldwide DDoS Attacks and Cyber Insights Research Report found that while 99% of the organizations it surveyed had some sort of DDoS protection in place, the vast majority of them (90%) were planning to invest more than in the previous year, and 36% thought they should be investing even more than that. The same way that keeping protected health information (PHI) secure continues to be of the utmost importance, further steps must be taken to protect healthcare organizations from DDoS attacks. Gated access through proper authentication  One of the primary ways healthcare organizations can prevent a DDoS attack is through proper authentication. Proper authentication reduces the attack surface by providing a gate of access to those systems and rules out certain flavors of anonymous attacks. Anonymous DDoS attacks use an open access or resource and distribute/coordinate mass usage of the access, and are challenging to thwart as it is difficult to differentiate an attack from actual usage. Proper authentication provides a simple differentiation. Credential loss is a possible attack vector even with authentication; however, coordinating DDoS attacks with authentication credentials is much more difficult due to the distribution of credentials. For instance, if an attacker has compromised a single access point and distributes the single authentication to all endpoints, a properly protected account could easily thwart an attack with access rate-limiting. Securing Patient Portals  Implementing secure patient portals is another way to prevent DDoS attacks on medical call centers. Patient portals require strong authentication. If proper authentication is required before using resources such as call centers and call agents, then the ability to launch a large-scale attack would require numerous credentials. In circumstances where multi-factor authentication is required, the complexity of a successful DDoS attack only increases — thereby making it more difficult to pull off. For example, if a username/password entry into a patient portal required a text or email verification as well — or even a prompt on an installed smartphone application — then the loss of even a large set of credentials could not be used in an attack without also compromising some other form(s) of communication. Since patient portals also contain mass amounts of private data, securing that information to the highest degree in order to safeguard it properly is key and can also help prevent a large-scale attack on a hospital’s click-to-call functionality. What the threat of DDoS attacks means to the global security community  Today it’s obviously critical that global security managers remain aware of the daunting DDoS threat. When (not “if”) an attack occurs, critical resources are consumed — sometimes even resources that are unrelated. For example, a DDoS attack against a website might consume networking resources, bringing down a patient portal, and an attack against a patient portal may consume database resources and prevent normal internal operations. DDoS attacks on weak targets are relatively inexpensive for attackers — existing botnets with simple traffic flooding exist and await the next purchase — and simple networking attacks can be thwarted with up-to-date networking equipment front-ending services. However, application-aware and custom attacks are much more expensive to create, and can be made prohibitively expensive by taking simple steps like requiring authentication before allowing access to resource offerings. Additionally, keeping software up-to-date is critical as software flaws are discovered, and quickly updating components is effective at blocking attacks before they can be crafted and deployed. Regularly updating systems and keeping them free of malware not only reduces available botnet size, amplification points and reflection points, but may also prevent a hop-off point for more sophisticated attacks. As more tech companies enter the healthcare field to enable its digitization, and information security continues to be top of mind in every field, it’s important for those in the security industry — some of whom may directly dabble in healthcare — as well as the healthcare organizations themselves to focus on increasing their security measures and to know what they should be doing to prevent this type of communications attack. Source: https://www.infosecurity-magazine.com/opinions/mcdreary-medical-ddos/

Original post:
McDreary? The Future of Medical Call Centers & DDoS