Tag Archives: denial of service attack

Bigger & smaller – DDoS threats here to stay with conflicting trends

The noise created by distributed denial of service attacks is higher than ever – with vendors and attackers complicating the picture – but what do enterprises need to worry about? Distributed Denial of Service (DDoS) attacks were one of the most talked about threats at InfoSecurity Europe 2017. One of the things vendors couldn’t agree on however, is the trend for their size and thus whether we should be defending against increasing numbers of small attacks or more frequent mega-attacks. Corero Network Security, who met with SC during the conference, said in a press release that, “the greatest DDoS risk for organisations is the barrage of short, low volume attacks which mask more serious network intrusions”. Research from the firm says that “despite several headline-dominating, high-volume DDoS attacks over the past year, the vast majority (98 percent) of the DDoS attack attempts against Corero customers during Q1 2017 were less than 10 Gbps per second in volume.” It added: “they are just disruptive enough to knock a firewall or intrusion prevention system (IPS) offline so that the hackers can target, map and infiltrate a network to install malware and engage data exfiltration activity.” Ashley Stephenson, CEO at Corero Network Security, explains: “Short DDoS attacks might seem harmless, in that they don’t cause extended periods of downtime. But IT teams who choose to ignore them are effectively leaving their doors wide open for malware or ransomware attacks, data theft or other more serious intrusions. Just like the mythological Trojan Horse, these attacks deceive security teams by masquerading as a harmless bystander – in this case, a flicker of internet outage – while hiding their more sinister motives.” DDoS protection has traditionally been something that major enterprises were able to deploy by having their traffic run through a supplier network at huge cost. The alternative was to switch traffic over to their DDoS protection provider in the event of an attack – but this could cause a delay of about 20 minutes while the company under attack found who to call and explain what was happening, the whole time that the attack was escalating. Instead, Laurent Gil, co-founder at Zenedge, explained to SC Media UK how his company’s approach to DDoS protection is different. “We have an always-on monitoring system on the cloud so there is nothing to install for the customer, it’s the same SSL as an ‘always on’ solution, but always on in the cloud for monitoring and analysing of traffic patterns and when the early signs of an attack are spotted, we automatically re-route traffic to our scrubbing centre within 60 seconds – down from the 20 minutes it takes non-automated systems,” Gil told SC. He added that because the traffic only switched on demand, when there is an attack, it is less cost than if it had to be handled all the time and with a 60 second response, it still mitigated against the attack ramping up. “It’s a tectonic shift in the market,” says Gil, adding, “We we can onboard many more enterprises, without them spending millions of dollars, which is what’s needed for a for mid-market enterprise. DDoS protection did not exist for these companies because they couldn’t afford it. It’s not that the traditional prime protection providers are losing revenues, but the market is much wider now than it was previously.” In contrast to Corero, veteran vendor Imperva, hosted sessions which could be misconstrued as ‘humble-brags’ named “how we stopped a 650Gbps DDoS attack over lunch”. Imperva points out that the source code of the Mirai botnet going open source has meant that the Tools, Tactics and Procedures (TTP) of botnet criminals have taken a step up. And naturally, it is prepared to protect against this threat with one of it’s “behemoth” data centre appliances. Imperva’s Robert Hamilton, director of product marketing, hosted the sessions and said “DDoS attacks aren’t going away anytime soon”. Raj Samani, chief scientist of Mcafee told SC: “The number is completely subjective. When we saw the beginnings of DDoS as an extortion tactic it was brushed off since the throughput wasn’t significant enough to worry most enterprises, then all of a sudden the firepower increased to in excess of 50Gbps. Whilst this number for many organisations can be easily managed (as we saw with DDoS providers withstanding 620Gbps attacks), the reality is that the firepower of DDoS attacks are on the up. What is the magic number that will cause concern? Well, it will be whatever hasn’t been tested against!” That may be the case, but then Akamai, another DDoS protection giant says in its Q1 2017 State of the Internet report that “the mega attacks are outliers that represent the limits enterprises must be prepared to defend against. However, the overwhelming number of smaller attacks means that these mega attacks have little impact on the trend lines that defend the median attack size, which is a better indicator of what an organisation is most likely to see.” Akamai raises another important point: the rise in use of IoT devices which are compromised for malicious use – such as using an “internet-enabled toaster to mine bitcoins” – are likely to end up contributing to harsher DDoS attacks as these devices are eventually recruited into the mega-botnets which carry out such attacks. A new report from Kaspersky Lab, also released after InfoSec, shows that when organisations are attacked by a DDoS, “customer-facing resources suffer more in banking, than in any other sector.” “For example, 49 per cent of banks that have suffered a DDoS attack have had their public website affected (compared to 41 percent of non-financial institutions) and 48 percent have had their online banking affected when they’ve been targeted by DDoS.” “Recovering from DDoS is also more expensive for banks than non-financial organisations. The report shows that a DDoS incident can cost a financial institution US$ 1,172,000 (£917,427) to recover from, compared to US$ 952,000 (£745,000) for businesses in other sectors.” Kirill Ilganaev, head of Kaspersky DDoS Protection, Kaspersky Lab said in a press release, “In the banking sector reputation is everything, and security goes hand-in-hand with this. If a bank’s online services come under attack, it is very difficult for customers to trust that bank with their money, so it’s easy to see why an attack could be so crippling. If banks are to protect themselves effectively from the price tag of an online banking cybersecurity incident, they first need to become more prepared for the dangers DDoS attacks pose to their online banking services. This threat should be featuring higher on banks’ security priorities.” Kaspersky Lab is encouraging financial institutions to share security intelligence to be better prepared for dealing with the threat of an attack on their online banking services. Source: https://www.scmagazineuk.com/bigger-smaller–ddos-threats-here-to-stay-with-conflicting-trends/article/668725/

Read this article:
Bigger & smaller – DDoS threats here to stay with conflicting trends

US Blames North Korea For Series Of DDoS Attacks

The Department of Homeland Security and the Federal Bureau of Investigation issued a rare cybersecurity bulletin linking North Korea to a series of attacks that have targeted global businesses and critical infrastructure since 2009. The alert focuses on a malware strain called DeltaCharlie, which DHS and FBI say was used by the North Korean government to launch distributed denial of service attacks. DDoS attacks use floods of web traffic from compromised devices to knock websites or services offline. North Korea targeted “the media, aerospace, financial, and critical infrastructure sectors in the United States and globally,” the alert says. The US government refers to North Korea’s hacking team as Hidden Cobra, but cybersecurity firms often use the slightly less sinister name Lazarus Group. The North Koreans have also been linked to the WannaCry ransomware that spread virally in May and shut down hospitals and businesses. WannaCry primarily targeted unpatched Windows machines, and it sounds like the Lazarus Group’s DDoS malware is also primarily exploiting devices that run old versions of Windows. “The multiple vulnerabilities in these older systems provide cyber actors many targets for exploitation,” the alert notes. Windows typically stops issuing patches for older operating systems after they have been retired, but the company today released patches that thwart WannaCry on outdated devices, ZDNet reports. Although DHS and FBI released data that will help detect and mitigate Lazarus Group attacks, the agencies said more research is necessary to “understand the full breadth” of the group’s capabilities. Source: https://www.gizmodo.com.au/2017/06/us-blames-north-korea-for-series-of-ddos-attacks/

More:
US Blames North Korea For Series Of DDoS Attacks

Examining the FCC claim that DDoS attacks hit net neutrality comment system

Attacks came from either an unusual type of DDoS or poorly written spam bots. On May 8, when the Federal Communications Commission website failed and many people were prevented from submitting comments about net neutrality, the cause seemed obvious. Comedian John Oliver had just aired a segment blasting FCC Chairman Ajit Pai’s plan to gut net neutrality rules, and it appeared that the site just couldn’t handle the sudden influx of comments. But when the FCC released a statement explaining the website’s downtime, the commission didn’t mention the Oliver show or people submitting comments opposing Pai’s plan. Instead, the FCC attributed the downtime solely to “multiple distributed denial-of-service attacks (DDoS).” These were “deliberate attempts by external actors to bombard the FCC’s comment system with a high amount of traffic to our commercial cloud host,” performed by “actors” who “were not attempting to file comments themselves; rather, they made it difficult for legitimate commenters to access and file with the FCC.” The FCC has faced skepticism from net neutrality activists who doubt the website was hit with multiple DDoS attacks at the same time that many new commenters were trying to protest the plan to eliminate the current net neutrality rules. Besides the large influx of legitimate comments, what appeared to be spam bots flooded the FCC with identical comments attributed to people whose names were drawn from data breaches, which is another possible cause of downtime. There are now more than 2.5 million comments on Pai’s plan. The FCC is taking comments until August 16 and will make a final decision some time after that. The FCC initially declined to provide more detail on the DDoS attacks to Ars and other news organizations, but it is finally offering some more information. A spokesperson from the commission’s public relations department told Ars that the FCC stands by its earlier statement that there were multiple DDoS attacks. An FCC official who is familiar with the attacks suggested they might have come either from a DDoS or spam bots but has reason to doubt that they were just spam bots. In either case, the FCC says the attacks worked differently from traditional DDoSes launched from armies of infected computers. A petition by activist group Fight for the Future suggests that the FCC “invent[ed] a fake DDoS attack to cover up the fact that they lost comments from net neutrality supporters.” But while FCC commissioners are partisan creatures who are appointed and confirmed by politicians, the commission’s IT team is nonpartisan, with leadership that has served under both Presidents Obama and Trump. There’s no consensus among security experts on whether May 8 was or wasn’t the result of a DDoS attack against the FCC comments site. One security expert we spoke to said it sounds like the FCC was hit by an unusual type of DDoS attack, while another expert suggested that it might have been something that looked like a DDoS attack but actually wasn’t. Breaking the silence FCC CIO David Bray offered more details on how the attack worked in an interview with ZDNet published Friday. Here’s what the article said: According to Bray, FCC staff noticed high comment volumes around 3:00 AM the morning of Monday, May 8. As the FCC analyzed the log files, it became clear that non-human bots created these comments automatically by making calls to the FCC’s API. Interestingly, the attack did not come from a botnet of infected computers but was fully cloud-based. By using commercial cloud services to make massive API requests, the bots consumed available machine resources, which crowded out human commenters. In effect, the bot swarm created a distributed denial-of-service attack on FCC systems using the public API as a vehicle. It’s similar to the distributed denial of service attack on Pokemon Go in July 2016. This description “sounds like a ‘Layer 7’ or Application Layer attack,” Cloudflare Information Security Chief Marc Rogers told Ars. This is a type of DDoS, although it’s different from the ones websites are normally hit with. “In this type of [DDoS] attack, instead of trying to saturate the site’s network by flooding it with junk traffic, the attacker instead tries to bring a site down by attacking an application running on it,” Rogers said. “I am a little surprised that people are challenging the FCC’s decision to call this a DDoS,” Rogers also said. Cloudflare operates a global network that improves performance of websites and protects them from DDoS attacks and other security threats. When asked if the FCC still believes it was hit with DDoS attacks, an FCC spokesperson told Ars that “there have been DDoS attacks during this process,” including the morning of May 8. But the FCC official we talked to offered a bit less certainty on that point. “The challenge is someone trying to deny service would do the same thing as someone who just doesn’t know how to write a bot well,” the FCC official said. FCC officials said they spoke with law enforcement about the incident. Spam bots and DDoS could have same effect DDoS attacks, according to CDN provider Akamai, “are malicious attempts to render a website or Web application unavailable to users by overwhelming the site with an enormous amount of traffic, causing the site to crash or operate very slowly.” DDoS attacks are “distributed” because the attacks generally “use large armies of automated ‘bots’—computers that have been infected with malware and can be remotely controlled by hackers.” (Akamai declined to comment on the FCC downtime when contacted by Ars.) In this case, the FCC’s media spokesperson told Ars the traffic did not come from infected computers. Instead, the traffic came from “cloud-based bots which made it harder to implement usual DDoS defenses.” The FCC official involved in the DDoS response told us that the comment system “experienced a large number of non-human digital queries,” but that “the number of automated comments being submitted was much less than other API calls, raising questions as to their purpose.” If these were simply spammers who wanted to flood the FCC with as many comments as possible, like those who try to artificially inflate the number of either pro- or anti-net neutrality comments, they could have used the system’s bulk filing mechanism instead of the API. But the suspicious traffic came through the API, and the API queries were “malformed.” This means that “they aren’t formatted well—they either don’t fit the normal API spec or they are designed in such a way that they excessively tax the system when a simpler call could be done,” the FCC official said. Whether May 8 was the work of spam bots or DDoS attackers, “the effect would have been the same—denial of service to human users” who were trying to submit comments, the FCC official said. But these bots were submitting many fewer comments than other entities making API calls, suggesting that, if they were spam bots, they were “very poorly written.” The official said a similar event happened in 2014 during the previous debate over net neutrality rules, when bots tied up the system by filing comments and then immediately searching for them. “One has to ask why a bot would file, search, file, search, over and over,” the official said. If it was just a spam bot, “one has to wonder why, if the outside entity really wanted to upload lots of comments in bulk, they didn’t use the alternative bulk file upload mechanism” and “why the bots were submitting a much lower number of comments relative to other API calls,” the official said. The FCC says it stopped the attacks by 8:45am ET on May 8, but the days that followed were still plagued by intermittent downtime. “There were other waves after 8:45am that slowed the system for some and, as noted, there were ‘bots’ plural, not just one,” the FCC official said. On May 10, “we saw other attempts where massive malformed search queries also have hit the system, though it is unclear if the requestors meant for them to be poorly formed or not. The IT team has implemented solutions to handle them even if the API requests were malformed.” Was it a DDoS, or did it just look like one? There is some history of attackers launching DDoS attacks from public cloud services like Amazon’s. But the kind of traffic coming into the FCC after the John Oliver show might have looked like DDoS traffic even if it wasn’t, security company Arbor Networks says. Arbor Networks, which sells DDoS protection products, offered some analysis for its customers and shared the analysis with Ars yesterday. Arbor says: When a client has an active connection to a website which is under heavy load, there is a risk that the server will be unable to respond in a timely fashion. The client will then start to automatically resend its data, causing increased load. After a while, the user will also get impatient and will start to refresh the screen and repeatedly press the “Submit” button, increasing the load even further. Finally, the user will, in most cases, close the browser session and will attempt to reconnect to the website. This will then generate TCP SYN packets which, if processed correctly, will move to the establishment of the SSL session which involves key generation, key exchange, and other compute intensive processes. This will most likely also timeout, leaving sessions hanging and resulting in resource starvation on the server. A spam bot would behave in the same manner, “attempting to re-establish its sessions, increasing the load even further,” Arbor says. “Also, if the bot author wasn’t careful with his error handling code, the bot might also have become very aggressive and start to flood the server with additional requests.” What the FCC saw in this type of situation might have looked like a DDoS attack regardless of whether it was one, Arbor said: When viewed from the network level, there will be a flood of TCP SYN packets from legitimate clients attempting to connect; there will be a number of half-open SSL session which are attempting to finalize the setup phase and a large flood of application packets from clients attempting to send data to the Web server. Taken together, this will, in many ways, look similar to a multi-faceted DDoS attack using a mix of TCP-SYN flooding, SSL key exchange starvation, and HTTP/S payload attacks. This traffic can easily be mistaken for a DDoS attack when, in fact, it is the result of a flash crowd and spam bot all attempting to post responses to a website in the same time period. DDoS attacks generally try to “saturate all of the bandwidth that the target has available,” Fastly CTO Tyler McMullen told Ars. (Fastly provides cloud security and other Web performance tools.) In the FCC’s case, the attack sounds like it came from a small number of machines on a public cloud, he said. “Another form of denial-of-service attack is to make requests of a service that are computationally expensive,” he said. “By doing this, you don’t need a ton of infected devices to bring down a site—if the service is not protected against this kind of attack, it often doesn’t take much to take it offline. The amount of traffic referenced here does not make it obvious that it was a DDoS [against the FCC].” Server logs remain secret The FCC declined to publicly release server logs because they might contain private information such as IP addresses, according to ZDNet. The logs reportedly contain about 1GB of data per hour from the time period in question, which lasted nearly eight hours. The privacy concerns are legitimate, security experts told Ars. “Releasing the raw logs from their platform would almost certainly harm user privacy,” Rogers of Cloudflare told Ars. “Finally, redacting the logs would not be a simple task. The very nature of application layer attacks is to look exactly like legitimate user traffic.” McMullen agreed. “Releasing the logs publicly would definitely allow [the details of the attack] to be confirmed, but the risk of revealing personal information here is real,” he said. “IP addresses can sometimes be tied to an individual user. Worse, an IP address combined with the time at which the request occurred can make the individual user’s identity even more obvious.” But there are ways to partially redact IP addresses so that they cannot be tied to an individual, he said. “One could translate the IP addresses into their AS numbers, which is roughly the equivalent of replacing a specific street address with the name of the state the address is in,” he said. “That said, this would still make it clear whether the traffic was coming from a network used by humans (e.g. Comcast, Verizon, AT&T, etc) or one that primarily hosts servers.” Open by design The FCC’s public comments system is supposed to allow anyone to submit a comment, which raises some challenges in trying to prevent large swarms of traffic that can take down the site. The FCC has substantially upgraded its website and the back-end systems that support it since the 2014 net neutrality debate. Instead of ancient in-house servers, the comment system is now hosted on the Amazon cloud, which IT departments can use to scale computing resources up and down as needed. But this month’s events show that more work needs to be done. The FCC had already implemented a rate limit on its API, but the limit “is tied to a key, and, if bots requested multiple keys, they could bypass the limit,” the FCC official told us. The FCC has avoided using CAPTCHA systems to distinguish bots from humans because of “challenges to individuals who have different visual or other needs,” the official said. Even “NoCAPTCHA” systems that only require users to click a box instead of entering a hard-to-read string of characters can be problematic. “Some stakeholders who are both visually impaired and hearing impaired have reported browser issues with NoCAPTCHA,” the FCC official said. “Also a NoCAPTCHA would mean you would have to turn off the API,” but there are groups who want to use the API to submit comments on behalf of others in an automated fashion. Comments are often submitted in bulk both by pro- and anti-net neutrality groups. The FCC said it worked with its cloud partners to stop the most recent attacks, but it declined to share more details on what changes were made. “If folks knew everything we did, they could possibly work around what we did,” the FCC official said. Senate Democrats asked the FCC to provide details on how it will prevent future attacks. While the net neutrality record now contains many comments of questionable origin and quality, the FCC apparently won’t be throwing any of them out. But that doesn’t mean they’ll hold any weight on the decision-making process. “What matters most are the quality of the comments, not the quantity,” Pai said at a press conference this month. “Obviously, fake comments such as the ones submitted last week by the Flash, Batman, Wonder Woman, Aquaman, and Superman are not going to dramatically impact our deliberations on this issue.” There is “a tension between having open process where it’s easy to comment and preventing questionable comments from being filed,” Pai said. “Generally speaking, this agency has erred on the side of openness. We want to encourage people to participate in as easy and accessible a way as possible.” Source: https://arstechnica.com/information-technology/2017/05/examining-the-fcc-claim-that-ddos-attacks-hit-net-neutrality-comment-system/

Excerpt from:
Examining the FCC claim that DDoS attacks hit net neutrality comment system

DDoS attacks shorter and more frequent: 80% now take less than an hour

During Q1 2017, a reduction in average DDoS attack duration was witnessed, thanks to the prevalence of botnet-for-hire services that commonly used short, low-volume bursts. Imperva Incapsula’s latest Global DDoS Threat Landscape Reportanalysed more than 17,000 network and application layer DDoS attacks that were mitigated during Q1 2017. Igal Zeifman, Incapsula security evangelist at Imperva told SC Media UK: “These attacks are a sign of the times; launching a DDoS assault has become as simple as downloading an attack script or paying a few dollars for a DDoS-for-hire service. Using these, non-professionals can take a website offline over a personal grievance or just as an act of cyber-vandalism in what is essentially a form of internet trolling.” The research found that more and more assaults occurred in bursts, as 80 percent of attacks lasted less than an hour. Three-quarters of targets suffered repeat assaults, in which 19 percent were attacked 10 times or more. For the first time, 90 percent of all network layer attacks lasted less than 30 minutes, while only 0.1 percent of attacks continued for more than 24 hours. The longest attack of the quarter continued for less than nine days. Researchers observed a higher level of sophistication on the part of DDoS offenders, reflected by the steep rise in multi-vector attacks. These accounted for more than 40 percent of all network layer assaults in Q1 2017. In terms of worldwide botnet activity, 68.8 percent of all DDoS attack requests originated in just three countries; China (50.8 percent), South Korea (10.8 percent) and the US (7.2 percent). Others on the attacking country list included Egypt (3.2 percent), Hong Kong (3.2 percent), Vietnam (2.6 percent), Taiwan (2.4 percent), Thailand (1.6 percent), UK (1.5 percent) and Turkey (1.4 percent). The US, UK and Japan continued to top the list of most targeted countries. Over the past year Singapore and Israel joined that list for the first time. Source: https://www.scmagazineuk.com/ddos-attacks-shorter-and-more-frequent-80-now-take-less-than-an-hour/article/663591/

Link:
DDoS attacks shorter and more frequent: 80% now take less than an hour

WannaCry FAQ

What is it ? WannaCry also know as WanaCrypt 2.0 is a form of malware commonly known as “Ransom Ware”. Where did it come from ? It was originally developed by the NSA in the US called “Eternal Blue” and was a way for them to secretly access computers. It was based on a flaw in windows machines, Unfortunately the NSA did not store this weaponized malware securely enough and someone hacked in and stole it. At this point it was loose and easily findable on the Internet. If you see a screen like this, you’re machine is definitely infected. Here is a link below from Microsoft to check/scan if your PC has a virus. https://www.microsoft.com/security/scanner/en-us/default.aspx Who is responsible for this ? At this point no one knows but there are a lot of smart people working on it and they will be caught eventually…This is my opinion. Is someone making money from this ? Yes, as with all ransom ware there is a money component.These are 3 discovered bitcoin Identifiers that victims are paying the ransom to Which is hardcoded into the Malware. As of 09:15 EST May 14, 2017 The total ransom paid is a total of $15,150.00 USD. This is surprisingly low, it’s definitely going to rise. Check for yourself on its progress by clicking the 3 links below. https://blockchain.info/address/13AM4VW2dhxYgXeQepoHkHSQuy6NgaEb94 https://blockchain.info/address/12t9YDPgwueZ9NyMgw519p7AA8isjr6SMw https://blockchain.info/address/115p7UMMngoj1pMvkpHijcRdfJNXj6LrLn How did my computer get infected ? If you’re on a corporate network, you most likely got it from another computer on your network. If you’re at home on a cable modem you got it through email phishing or visiting a hacked or a sketchy website. How did it spread so quickly ? As you most likely know by now, millions of computers were infected in a few short days and those most affected by this are on corporate, Government and University networks. It spreads on these networks by using a windows flaw that goes from machine to machine using Microsoft’s SMB feature . Here’s a short list of victims from GITHUB NHS (uk) turning away patients, unable to perform x-rays. (list of affected hospitals) Nissan (uk) http://www.chroniclelive.co.uk/news/north-east-news/cyber-attack-nhs-latest-news-13029913 Telefonica (spain) ( https://twitter.com/SkyNews/status/863044193727389696 ) power firm Iberdrola and Gas Natural ( spain ) FedEx (us) ( https://twitter.com/jeancreed1/status/863089728253505539 ) University of Waterloo ( us ) Russia interior ministry & Megafon (russia) https://twitter.com/dabazdyrev/status/863034199460261890/photo/1 VTB (russian bank) https://twitter.com/vassgatov/status/863175506790952962 Russian Railroads (RZD) https://twitter.com/vassgatov/status/863175723846176768 Portugal Telecom ???????? – Sberbank Russia ( russia ) Shaheen Airlines (india, claimed on twitter) Train station in frankfurt ( germany ) Neustadt station ( germany ) the entire network of German Rail seems to be affected ( @farbenstau ) in China secondary schools and universities had been affected ( source ) A Library in Oman ( @99arwan1 ) China Yanshui County Public Security Bureau ( https://twitter.com/95cnsec/status/863292545278685184 ) Schools/Education (France) https://twitter.com/Damien_Bancal/status/863305670568837120 A mall in singapore https://twitter.com/nkl0x55/status/863340271391580 ATMs in china https://twitter.com/95cnsec/status/863382193615159 Renault STC telecom Norwegian soccer team ticket sales Is my website spreading this malware ? I can only say that any DOSarrest customers using our advanced WAF are not spreading this Malware as we won’t allow this type of malicious traffic to get to your server. Is it still spreading ? No, good news ! This thing had a kill switch built into its code, so if any machine can access this site www.iuqerfsodp9ifjaposdfjhgosurijfaewrwergwea.com it won’t spread from that machine. I’m infected, What should I do ? We recommend that you wipe your machine clean  and restore from back-ups….of course everyone has backups, Right ? Need more info… Try Github.com Microsoft to get the free patch if you need it. Source: https://www.dosarrest.com/ddos-blog/wannacry-faq/

Read More:
WannaCry FAQ

FCC says DDOS attacks, not net neutrality comments, tied up comments system

The federal agency did not provide any evidence of the alleged attacks, which occurred as HBO comedian John Oliver urged viewers to flood the FCC with comments. The Federal Communications Commission (FCC) on Monday said that consumers trying to use its Electronic Comment Filing System ran into delays Sunday night because of multiple distributed denial-of-service (DDoS) attacks — not due to a deluge of comments from net neutrality proponents, as early reports suggested. “Beginning on Sunday night at midnight, our analysis reveals that the FCC was subject to multiple distributed denial-of-service attacks (DDos),” FCC chief information officer David Bray said in a statement. “These were deliberate attempts by external actors to bombard the FCC’s comment system with a high amount of traffic to our commercial cloud host. These actors were not attempting to file comments themselves; rather they made it difficult for legitimate commenters to access and file with the FCC.” The statement followed news reportssuggesting the FCC site was once again overwhelmed by commenters trying to voice their support for net neutrality at the behest of comedian John Oliver. On his HBO show Sunday night, Oliver urged viewers to leave comments at goFCCyourself.com, a URL that redirects visitors to the FCC’s proposal to reverse net neutrality rules. In 2014, net neutrality supporters managed to bring down the FCC comments system after Oliver made a similar plea for commenters to flood the site. The FCC didn’t offer any evidence of the DDoS attacks, nor did the agency immediately answer questions about how the incident was handled. ZDNet will update this article if the FCC responds. At least one pro-net neutrality group, Fight for the Future, expressed skepticism about the agency’s claim that the problems were caused by DDoS attacks. “The FCC’s statement today raises a lot of questions, and the agency should act immediately to ensure that voices of the public are not being silenced as it considers a move that would affect every single person that uses the Internet,” Fight for the Future Campaign Director Evan Greer said in a statement. By Monday afternoon, the FCC’s comments system appeared to be functioning, and there were more than 179,000 comments on the site. FCC Chairman Ajit Pai acknowledged to CNET’s Maggie Reardon on Monday that he favors “a free and open internet” — meaning he favors rolling back the Obama-era net neutrality rules. However, he said the committee has an “open mind” and will consider the public comments that are collected. “It’s not a decree,” he said of the proposal. “The entire purpose of this process is to get public input. Then, after the record is closed, we apply what the DC Circuit calls a ‘substantial evidence test.’ We look through the record, figure out what the right course is based on facts in the record. Then we make the appropriate judgment. I don’t have any predetermined views as to where we’re going to go.” Source: http://www.zdnet.com/article/fcc-says-ddos-attacks-not-net-neutrality-comments-tied-up-comments-system/

Read more here:
FCC says DDOS attacks, not net neutrality comments, tied up comments system

How can you prepare for a cyber attack?

Keeping your data secure is more important than ever, but it seems like there’s a new wide-scale data breach every other week. In this article, David Mytton discusses what developers can do to prepare for what’s fast becoming inevitable. Cyber security isn’t something that can be ignored anymore or treated as a luxury concern: recent cyber attacks in the UK have shown that no one is immune. The stats are worrying – in 2016, two thirds of large businesses had a cyber attack or breach, according to Government research. Accenture paints a bleaker picture suggesting that two thirds of companies globally face these attacks weekly, or even daily. According to the Government’s 2016 cyber security breaches survey, only a third of firms have cyber security policies in place and only 10% have an emergency plan. Given management isn’t handling the threat proactively, developers and operations specialists are increasingly having to take the initiative on matters of cybersecurity. This article covers some essential priorities developers should be aware of if they want their company to be prepared for attack. Know your plan There’s no predicting when a cyber attack might come, whether it be in the form of a DDoS, a virus, malware or phishing. It’s therefore important to be constantly vigilant, and prepared for incidents when they do occur. Senior leadership in your company should be proactive when laying out a plan in the event of an attack or other breach, however this might not always be the case. No matter what your position is within your company, there are preemptive actions you can take on a regular basis to ensure that you’re adequately prepared. If you’re in an Ops team, make sure you’re encouraging your team to test your backups regularly. There’s little use having backups if you’re unable to actually restore from them, as GitLab learned to their detriment earlier in the year. Use simulations and practice runs to ensure that everyone on your team knows what they’re doing, and have a checklist in place for yourself and your colleagues to make sure that nothing gets missed. For example, a DDoS attack may begin with a monitoring alert to let you know your application is slow. Your checklist would start with the initial diagnostics to pinpoint the cause, but as soon as you discover it is a DDoS attack then the security response plan should take over. If you happen to be on-call, make sure you’ve got all the tools you need to act promptly to handle the issue. This might involve letting your more senior colleagues know about the issue, as well as requesting appropriate assistance from your security vendors. Communication is always one of the deciding factors in whether a crisis can be contained effectively. As a developer or operations specialist, it’s important to be vocal with your managers about any lack of clarity in your plan, and ensure that there are clear lines of communication and responsibility so that, when the worst does occur, you and your colleagues feel clear to jump into action quickly. Remember your limits It might sound obvious, but it’s worth remembering: in a cyber attack or catastrophic incident, there is only so much you yourself can do. Too many developers and operations staff fall prey to a culture of being ‘superheroes’, encouraged (often through beer and pizza) to stay as late as they can and work as long as possible on fixes to particular issues. The truth is, humans make mistakes. Amazon’s recent AWS S3 outage is a good example: swathes of the internet were taken offline due to one typo. If you’re on-call while a cyber attack occurs there’s no denying you’re likely to work long hours at odd times of the day, and this can put a real strain on you, both mentally and physically. This strain can make it much harder for you to actually concentrate on what you’re doing, and no amount of careful contingency planning can compensate for that. At Server Density we’re keenly aware that employee health and well being is critical to maintaining business infrastructure, especially in the event of a crisis. That’s why we support movements like HumanOps, which promote a wider awareness of the importance of employee health, from the importance of taking regular breaks to ergonomic keyboards. All too often people working in IT forget that the most business-critical hardware they look after isn’t servers or routers, it’s the health and well being of the people on the front lines looking after these systems. Cyber attacks are stressful on everyone working in an organisation, and the IT teams take the brunt of the strain. However, with careful planning, clear lines of delegation and an appreciation of the importance of looking after each other’s health, developers and operations specialists should be able to weather the storm effectively and recover business assets effectively. Source: https://jaxenter.com/can-prepare-cyber-attack-133447.html

Read More:
How can you prepare for a cyber attack?

How The New York Times Handled Unprecedented Election-Night Traffic Spike

When he woke up the morning of October 21, 2016, Nick Rockwell did the same thing he had done first thing every morning since The New York Times hired him as CTO: he opened The Times’ app on his phone. Nothing loaded. The app was down along with BBC, CNN, Fox News, The Guardian, and a long list of other web services, taken out by the largest DDoS attack in history of the internet. An army of infected IP cameras, DVRs, modems, and other connected devices – the Mirai botnet – had flooded servers of the DNS registrar Dyn in 17 data centers, halting a huge number of internet services that depended on it for letting their users’ computers know how to find them online. The outage had started only about five minutes before Rockwell saw the blank screen on his phone. His team kicked off a standard process that was in place for such outages, failing over to the Times’ internal DNS hosted in two of its four data centers in the US. The mobile app and the main site were back online about 45 minutes after they had gone down. While going through the fairly routine recovery process, however, something was really worrying Rockwell. The thing was, he didn’t know whether the attack was directed at many targets or at the Times specifically. If it was the latter, the effect could be catastrophic; its internal DNS wouldn’t hold against a major DDoS for more than five seconds. “It would’ve been incredibly easy to DDoS our infrastructure,” he said in a phone interview with Data Center Knowledge. His team had been a few months deep into fixing the vulnerability, but they weren’t finished. “We were OK [in the end], but we were vulnerable during that time.” The process to fix it started as they were preparing for the 2016 presidential election. Election night is the biggest event for every major news outlet, and Rockwell was determined to avoid the 2012 election night fiasco, when the site went down, unable to handle the spike in traffic. One of the steps the team decided to do in preparation for November 2016 was to fully integrate a CDN (Content Delivery Network). CDN services, such as Akamai, CloudFlare, or CDN services by cloud providers Amazon, Microsoft, and Google, store their clients’ most popular content in data centers close to where many of their end users are located – so-called edge data centers — from where “last-mile” internet service providers deliver that content to its final destinations. A CDN essentially becomes a highly distributed extension of your network, adding to it compute, storage, and bandwidth capacity in many metros around the world. That a CDN had not been integrated into the organization’s infrastructure came as a big surprise to Rockwell, who joined in 2015, after 10 months as CTO at another big publisher, Condé Nast. While at Condé Nast, he switched the publisher from a major CDN provider to a lesser-known CDN by a company called Fastly. He has since become an unapologetically big fan of the San Francisco-based startup, which now also delivers content to The New York Times users around the world. Being highly distributed by design puts CDNs in good position to help their customers handle big traffic spikes, be it legitimate traffic generated by a big news event or a malicious DDoS attack. (Rockwell said he did wonder, as the Dyn attack was unfolding, whether it was a rehearsal for election night.) Fastly ensured that on the night Donald Trump beat Hillary Clinton, the Times rolled without incident through a traffic spike of unprecedented size for the publisher: an 8,371 percent increase in the number of people visiting the site simultaneously, according to the CTO. The CDN has also mostly absorbed the much higher levels of day-to-day traffic The Times has seen since the election as it covers the Trump administration. The six-year-old startup, which this year crossed the $100 million annualized revenue run-rate threshold, designed its platform to give users a detailed picture of the way their traffic flows through its CDN and lots of control. Artur Bergman, Fastly’s founder and CEO, said the platform enables a user to treat the edge of their network the same way they treat their own data centers or cloud infrastructure. In your own data center you have full control of your tools for improving your network’s security and performance (things like firewalls and load balancers), Bergman explained in an interview with Data Center Knowledge. While you maintain that level of control in the public cloud, you don’t necessarily have it at the edge, he said. Traditionally, CDNs have offered customers little visibility into their infrastructure, so even differentiating between a legitimate traffic spike and a DDoS attack has been hard to do quickly. Fastly gives users log access in real-time so they can see exactly what is happening to their edge nodes and make critical decisions quickly. The startup today unveiled an edge cloud platform, designed to enable developers to deploy code in edge data centers instantly, without having to worry about scaling their edge infrastructure as their applications grow. It also announced a collaboration with Google Cloud Platform, pairing its platform with the giant’s enterprise cloud infrastructure services around the world. GCP is one of two cloud providers The New York Times is using. The other one is Amazon Web Services. Today, the publisher’s infrastructure consists of three leased data centers in Newark, Boston, and Seattle, and one facility it owns and operates on its own, located in the New York Times building in Times Square, Rockwell said. The company uses a virtual private cloud by AWS and some of its public cloud services in addition to running some applications in the Google Cloud. This setup is not staying for long, however. Rockwell’s team is working to shut down the three leased data centers, moving most of its workloads onto GCP and AWS, with Fastly managing content delivery at the edge. Google’s cloud is also going to play a much bigger role than it does today. The plan is to run apps that depend on Oracle databases in AWS, while everything else, save for a few exceptions (primarily packaged enterprise IT apps), will run in app containers on GCP, orchestrated by Kubernetes. As he works to sort out what he in a conference presentation referred to as the “jumbled mess” that is The Times’ current infrastructure, Rockwell no longer worries about DDoS attacks. Luckily for his team, there was no major DDoS attack on The Times between the day he came on board and the day Fastly started delivering the publisher’s content to its readers. Whether there was one after Fastly was implemented is irrelevant to him. “It’s no longer something I have to think about.” Source: http://www.thewhir.com/web-hosting-news/how-the-new-york-times-handled-unprecedented-election-night-traffic-spike

View article:
How The New York Times Handled Unprecedented Election-Night Traffic Spike

The Short List of Who Protects Companies Against DDoS Attacks

Here’s a question: when was the last time you got something truly useful for free? Like that time it turned out your phone company was giving you mobile data even though it wasn’t included in the plan you selected, or that time you turned up at the car dealership for a major repair, and they informed you the cost was covered because you’re just such a great customer. Oh right: it was never. So why is it that so many companies seem to think somebody else is responsible for protecting them against distributed denial of service (DDoS) attacks? DDoS mitigation is an important and complex service that requires careful expertise, on-demand or always-on deployment, nearly limitless scalability and huge amounts of network bandwidth. If a company hasn’t taken the steps to invest in this kind of protection, they don’t have it. Attack overview A DDoS attack is a distributed denial of service attack, which is a cyberattack that uses a botnet, a network of internet-connected devices that have been hijacked for remote use, to direct large amounts of malicious traffic at a website that has been targeted. This traffic overwhelms the website, its server or its resources to take it offline or render it so frustratingly slow it can’t be used. Distributed denial of service attacks have been a problem for websites and organizations of all sizes for over 15 years, and the problem is becoming a crisis as DDoS for hire services steadily gain popularity, and botnets steadily gain in size due to unsecured Internet of Things devices. For larger organizations, a successful DDoS attack can cost between $20,000 and $100,000 per hour, and while unquantifiable, the loss of user trust or loyalty that can result from such an attack can be even worse. Erroneous assumptions DDoS attacks haven’t exactly been flying under the radar lately. Their frequency, as well as the threat they pose, should be well known to anyone working in online security. Yet a recent survey by Kaspersky uncovered some staggering statistics. Thirty percent of companies surveyed indicated that they haven’t taken action against the threat of DDoS attacks because they believe they won’t be targeted, 40% believe their ISP will provide protection, and a further 30% believe data centers will provide protection. Perhaps most misguided of all, 12% believe a small amount of DDoS-caused downtime would not have a negative impact on the company. Why ISPs won’t provide complete protection While some ISPs do provide complete DDoS protection as an added service that clients pay good money for, most provide only partial protection. Due to the large amounts of bandwidth an ISP has available, they can do well against large volumetric attacks, but craftier application layer attacks are a problem. Also, while ISPs can be good at identifying malicious traffic, they don’t deal with that malicious traffic efficiently, meaning that while it’s struggling to deal with an influx of malicious traffic, legitimate traffic will be caught in the bottleneck with it or even discarded alongside the bad traffic, resulting in users unable to get through to the website. In other words, while a basic DDoS attack could be thwarted by an ISP, the result – users unable to access the website – ends up being the same. Further, some DDoS attacks like the Slowloris are made up of traffic and requests that are seemingly legitimate, making them difficult to detect for even some intrusion detection systems, let alone an ISP. Perhaps the biggest problem with relying on an ISP for protection is that regardless of what type of attack is launched, there isn’t going to be a quick response from an ISP. They aren’t built for the kind of real-time monitoring and deployment that can catch an attack within seconds. Most often, it will be several hours before an ISP begins to deal with an attack. By then, the damage is done. Why data centers won’t provide complete protection either There’s a caveat here: just as with ISPs, some data centers do provide complete protection against distributed denial of service attacks, but again it is an added service that definitely adds to the data center bill. Similar to ISPs, data centers do provide some measure of DDoS protection, but it can generally only protect against basic attacks that can be stopped with rate limiters, or attacks that are not directly aimed at an application service. Large or complex attacks cannot be stopped by basic data center protection. Moreover, not only do ISPs and data centers not provide complete protection against DDoS attacks, but they also put their clients at a bigger risk of second-hand DDoS damage. If an ISP or data center is struggling with a large or complex attack, websites that weren’t targeted will nonetheless suffer the effects. A-Z protection Professional DDoS protection is built to provide the quickest, most proactive and most complete protection against distributed denial of service attacks. Cloud-based protection is especially excellent at protecting against both network-layer and application-layer attacks, and with the use of a scrubbing server, attack traffic will be kept from ever touching the target website while legitimate traffic is let through unfettered. For companies after a more bang-for-their-buck solution, it may be preferable to look into a quality content delivery network (CDN). CDNs are designed to improve site speed and performance, and all CDNs offer some level of DDoS protection due to the built-in load balancing that comes from their multi-server environments. However, CDNs will also offer additional DDoS protection on top of that. High-quality distributed denial of service protection won’t become a freebie or throw-in until the internet reaches a phase where there’s something so much worse and so much more common than DDoS attacks that they become almost after-thoughts for all the malicious cyberattackers out there. So companies can either root for that reality, or take protection into their own hands by investing in solid DDoS protection. Source: http://www.iotevolutionworld.com/iot/articles/430637-short-list-who-protects-companies-against-ddos-attacks.htm

Read More:
The Short List of Who Protects Companies Against DDoS Attacks

Russian bank Alfa Says it was Under DNS Botnet Attacks

The Russian banking giant Alfa announced, in a press statement, that hackers targeted its cyber infrastructure in a large-scale DNS Botnet attack. The purpose appears to have been to make it seem as though the bank had been communicating with the Trump Organization. The bank is now asking U.S. to assist it to uncover the culprits. On Friday, the bank revealed that their servers were under three cyber attacks targeting the domain name server (DNS) since mid-February. It is unclear who was behind these attacks; the details show unknown hackers allegedly used Amazon and Google servers to send requests to a Trump Organization server posing to look like they came from Alfa Bank, pushing the Trump server to respond back to the bank. An Alfa Bank spokesperson said: “The cyber attacks are an attempt by unknown parties to manufacture the illusion of contact between Alfa Bank’s DNS servers and ’Trump servers’’. Furthermore, Alfa Bank revealed that it is ready to work with the U.S. law enforcement agency to identify the individuals involved in the campaign. The bank has already hired Stroz Friedberg, a US-based cyber security firm to get into the depth of the matter. “The cyber attacks are an attempt by unknown parties to manufacture the illusion of contact between Alfa Bank’s DNS servers and ‘Trump servers,” an Alfa Bank representative said in a statement. “We have gone to the U.S. Justice Department and offered our complete cooperation to get to the bottom of this sham and fraud.” On February 18, 2017, the bank claims it experienced suspicious cyber activity from an unidentified third-party. Specifically, the unidentified third-party repeatedly sent suspicious DNS queries from servers in the U.S. to a Trump Organization server. The unidentified individuals made it look as though these queries originated from variants of MOSCow.ALFAintRa.nET. The use of upper and lower case indicated the human intervention in the process. Moreover, Alfa Bank says it received more than 1,340 DNS responses containing mail.trump-email.com.moscow.alfaintra.net. Last week, CNN reported that the FBI’s counterintelligence team was investigating if there was a computer server connection between the Trump Organization and Alfa Bank during the U.S. election, according to sources close to the investigation. The bank has now denied that there was ever a conversation between both parties. Mark McArdle, CTO at cyber security company eSentire commented on the issue and said that: “A botnet is typically associated with an attack that leverages scale, as it can employ thousands (potentially millions with IoT devices) of devices and use them to coordinate an attack on a target. We’ve seen this with some big DDoS attacks. We also see botnets being used as platforms for large-scale spamming. However, the number of DNS connections reported in the Alfa Bank attacks (1,340 in once case) don’t indicate massive scale. A botnet, however, can be used to add another layer of obfuscation between you and your attacker. Following the breadcrumbs back could bring you to a PVR that has been hacked and is now part of a botnet. I suspect in this case, the botnet is being used more for obfuscation of identity than scale. The attackers may be using a botnet to send spoofed DNS requests to a legitimate Trump server using a spoofed “reply-to” address inside Alfa-Bank’s infrastructure. Spoofing DNS lookups is not very difficult since DNS is not authenticated, and the ability to spoof source addresses is unfortunately still available – all you need is a system to launch your attack from that is connected to the Internet via an ISP that doesn’t filter out spoofed source addresses. While this type of attack has been around for a while, what’s new in this case is that someone is using it to try and contrive evidence of a relationship where neither party sought one. Additionally, there is also reference in Alfa Bank’s statement about Spam messages from marketing@trumphotels.com. It’s also possible to spoof email (spammers do this all the time). A spoofed email could include a reference to a legitimate Trump Org server and a real connection would be established if a user clicked on it (or selected “show images” in the email). Again, this does not mean the email came from Trump Org, just that it was sent in order to attempt to solicit “a connection” between Trump Org and Alfa-Bank.” Either way, identity is difficult to determine unless cryptographic certificates are used, and ultimate hack attribution is even more difficult. This is not the first time that allegations surrounding Trump’s relations with Russia have emerged. Some believe Russia hacked the US election to give Trump a way to win the presidency while some believe that Russian media was involved in spreading fake news against Trump’s opponent Hillary Clinton. Either way, nothing has been proven yet. Source: https://www.hackread.com/russia-alfa-bank-target-with-dns-botnet-attacks/

More:
Russian bank Alfa Says it was Under DNS Botnet Attacks