Tag Archives: web-development

Detecting Constant Low-Frequency Appilication Layer Ddos Attacks Using Collaborative Algorithms

Abstract: — A DDoS (i.e., Distributed Denial of Service) attack is a large scale distributed attempt by malicious attackers to fill the users’ network with a massive number of packets. This exhausts resources like bandwidth, computing power, etc.; User can’t provide services to its clients and network performance get destroyed. The methods like hop count filtering; rate limiting and statistical filtering are used for recovery. In this paper, we explored two new information metrics which have generalized information about entropy metric and distance metric .They can detect low-rate of Distributed Denial of Service i.e., DDoS attacks by measuring difference  between the legitimate traffic and the attack traffic. The generalized entropy metric information can detect the attacks on several hops before than the traditional Shannon metric. The proposed information about the distance metric outperforms the popular Kullback–Leibler divergence approach as it has the ability to perfectly enlarge the adjudication distance and gets the optimal detection sensitivity. Further the IP trace back algorithm can find all attackers as well as their attacks through local area networks (LANs) and will delete the attack traffic. Index Terms— Attack detection, information metrics, IP trace back, low-rate distributed denial of service (DDoS) attack. I. INTRODUCTION Present in networking we have to provide security to information while accessing and transmitting. Lots of hacking tools are available for getting the information that was transmitted in the network. A standard security mechanism is in need to overcome this thing. The information in the network have to be out of range to intruders. It impacts bandwidth, processing capacity, or memory of a network. It has huge occupying nature on wired and wireless networks. DDoS attack is an intelligent attack and considered as low rate attack. The attacker is capable of sending multiple numbers of attack  packets to the user which is out bound to elude detection. Mostly combination of large-scale DDoS attacks and multiple Low-rate attacks are making user uncomfortable in the networking process. So it is becoming difficult to detect and getting solutions to such attacks. Nowadays, several Distributed Denial of Service attacking detection methods of metrics are in use, they are mainly separated into the following categories: i) the signature-based metric, and ii) anomaly-based metric. The signature-based method of metric depends on a technology that deploys a predefined set of attack-signatures like patterns or strings as signatures to match the incoming  packets. This anomaly-based detection method of metric typically models the normal network (traffic) behavior and  deploys it to compare the differences to incoming network  behavior. Anomaly-based method of detection has many limitations: i) Attackers can train detection systems to gradually accept anomaly network behavior as normal . ii) The rate at which the false positives use the anomaly- based detection metric is generally higher than those using the signature-based detection metric. It is difficult to set a threshold that helps us to balance the rate of false positives and the false negatives. iii) Precisely the extraction of the features like normal and anomalous network behaviors is very difficult. An anomaly- based detection method of metric uses a  predefined as well as specific threshold for example, an abnormal deviation of parameters related to some statistical characteristics that are considered from normal network traffic, to identify abnormal traffic amongst all normal traffic. Hence, it is important to utilize and to be decisive while choosing the statistical methods and tools respectively. It is an acceptable fact that the fractional Gaussian noise function and the Poisson distribution function can be used to simulate the can be used to simulate real network traffic in aggregation and the DDoS attack traffic in aggregation respectively. Many information theory based metrics have  been proposed to overcome the above limitations. In information theory, information entropy is a measure of the uncertainty associated with a random variable. Information distance (or divergence) is a measure of the difference  between different probability distributions. Shannon’s entropy and Kullback–Leibler’s divergence methods have  both been regarded as effective methods based on IP address-distribution statistics for detecting the abnormal traffic. Time taken for detection as well as detection accuracy of DDoS attacks are the two most important criteria for rating a defense system. Through this paper, we make you aware of two new and effective anomaly-based detection method of metrics that not only identify attacks quickly, but also they reduce the rate of false positives as compared to the traditional Shannon’s entropy method and the Kullback–Leibler divergence method. Contributions Some of the main contributions made in this paper are as follows: 1) It highlights the advantages and also it analyses the generalized entropy and information distance compared with Shannon entropy and Kullback–Leibler distance, respectively. 2) It proposes a better technique to the generalized entropy and information distance metrics to perform better than the traditional Shannon entropy and Kullback–Leibler distance method of metrics at low-rate DDoS attack detection in terms of quick detection, low rate of false positives and stabilities. 3) It proposes an effective IP trace back scheme that is based on an information distance method of metric that can trace all the attacks made by local area networks (LANs) and drive them back in a short time. ALGORITHMS FOR DETECTION AND IP TRACEBACK ANALYSIS In this section, we propose and analyze two effective detection algorithms and an IP traceback scheme. In this  paper, we make the following reasonable assumptions: 1) We will have full control of all the routers; 2) We will have extracted an effective feature of network traffic to sample its probability distribution; 3) We will have obtained and stored the average traffic of the normal, as well as the local thresholds and routers on their own in advance; 4) On all routers, the attack traffic obeys Poisson distribution and the normal traffic obeys Gaussian noise distribution. Our algorithm can not only detect DDoS attacks at router via single-point detection, but can also detect  the attacks that are made using a collaborative detection at routers. Fig. 2 shows the processing flowchart of the collaborative detection algorithm. Compared with single- point detection, we can detect attacks even before by using a collaborative detection approaches if the traffic can be analyzed before them. The divergence and distance are increasing simultaneously. By increasing the divergence  between legitimate traffic and attack traffic we can distinguish DDoS attacks easily and earlier. Therefore, in DDoS attack detection; we can take full advantage of the additive and increasing properties in of the information divergence and the information distance to enlarge the distance or gap between legitimate traffic and attack traffic. This means we can find and raise alarms for DDoS attacks quickly and accurately with a lower rate of false positives in upper stream routers instead of the victim’s router. In information theory, we know that both information divergence and information distance are nonnegative values and the sum of the divergences or distances is always greater C. IP Trace back Analysis IP trace back is the ability to find the source of an IP  packet without relying on the source IP field in the packet, which is often spoofed. We combine our DDoS attacks detection metric with IP trace back algorithm and filtering technology together to form an effective collaborative defense mechanism against network security threats in Internet. In hop-by-hop IP tracing, the more hops the more tracing processes, thus the longer time will be taken. Listing 1. A collaborative DDoS attack detection algorithm 1. Set the sampling frequency as f , the sampling as T, and the collaborative detection threshold as 0. 2. In routers R1 and R2 of Fig. 1, sampling the network tra ?ic comes from the upstream routers R3, R4 , R5, R6 and LAN1, LAN; in parallel. 3. Calculate in parallel the numbers of packet which have various recognizable characteristics (e.g., the source IP address or the packet’s size, etc.) in each sampling time interval ‘r(‘r = 1/ f) within T. 4. Calculate the probability distributions of the network tra ?ic come from R3, R4, LAN 1 and R5, R6, LAN2 in parallel. 5. Calculate their distances on router R1 and R2, respectively, using the formula Da(Ps Q) = Da(PllQ) + D¢-(Q||P)- 6. Sum the distances. 7. If the summed distance is more than the collaborative detection threshold 0, then the system detects the DDoS attack, and begins to raise an alarm and discards the attack packets; otherwise the routers forward the packets to the downstream routers. In order to convenience for IP trace back algorithm analysis, we classify two types of traffic in Figs. 1 and 3 as local traffic and forward traffic, respectively. The local traffic of is the traffic generated from its LAN, the forward traffic of is the sum of its local traffic and the traffic forwarded from its immediate upstream routers. In this paper, we propose an IP trace back algorithm that can trace the source (zombies) of the attack up to its local administrative network; Listing 2 illustrates this algorithm. Listing 2. An IP traceback algorithm in DDoS attacks detection The proposed IP trace back algorithm based on a sample scenario of low-rate DDoS attacks on a victim. When the  proposed attacks detection system detects an attack on a victim, the proposed IP traceback algorithm will be launched immediately. On router , the proposed traceback algorithm calculates information distances based on variations of its local traffic and the forward traffic from its immediate upstream routers; in this paper, we set LAN of router include the victim. If the information distance based on its local  traffic is more than the specific detection threshold, the  proposed detection system detects an attack in its LAN IP_Traceback_Algorithm () while(true) call Check_ForwardTraf ?c(0)//check attacks on router R0 (or victim) Check_ForwardTra ?ic (i) calculate infommtion distance D I-( R,-) i1°D:(Ri> > arm) call Check_LocalTra ?c for j = 1 to n k = the ID of the jth immediate upstream router of router Ri call Check_ForwardTra ?ic (Ic) end for end if I Check_LocalTra ?ic (xi) calculate infomlation distance D1,- if Du > 01¢ stop forwarding the attack tra ?c to downstream routers (or destination), label the zombie end if This means that the detected attack is an internal attack. If the information distances based on the forward traffic from its immediate upstream routers and are both more than the specific detection threshold and, respectively, the proposed detection system has detected attacks in routers and , then on and the proposed trace back algorithm calculates information distances based on variations of their local traffic and the forward traffic from their immediate upstream routers, and Will find that there are no attacks in LAN and LAN and ; therefore, on routers , and the proposed algorithm calculates continually information distances based on variations of their local traffic and the forward traffic from their immediate upstream routers, then can find there is an attack (zombie) in LAN so the router will stop forwarding the traffic from the zombie immediately. RELATED WORK The metrics of an anomaly-based detection have been the focusing on the intense study years together in an attempt to detect the intrusions and attacks done on the Internet. Recently, this information theory is being used as one of the statistical metrics that are being increasingly used for anomaly detection. Feinstein et al present methods to identify DDoS attacks by computing entropy and frequency-sorted of selected packet attributes. These Distributed Denial of Service attacks show their characteristics of the selected packet attributes to its anomalies, and its detection accuracy and performance can  be analyzed with the help of live traffic traces among a variety of network environments. However,  because of the proposed detector and responder there will  be a coordination lack with each other, then the impact of its responses on legitimate traffic and expenses for computational analysis may increase. Yu and Zhou applied a special technique for information theory parameter to discriminate the Distributed Denial of Service attack against the surge legitimate accessing. That technique is  based on the shared regularities along with different Distributed Denial of Service attack traffic, which differentiates it from real surging accessing over a short  period of time. However, the proposed detection algorithm will be helpful to us in predicting a single directions or a limited number of directions but the real problem comes when these attackers adopt a multiple attack package generation function in one attack to fool us. Lee and Xiang used various information-theoretic measures like entropy, conditional entropy, relative conditional entropy, information gain, and information cost for anomaly detection, etc. yes it is true that for some extent measures like mentioned above can be used to evaluate the quality of anomaly detection methods and to build the appropriate anomaly detection models but we find a tough time to  build an adaptive model that can dynamically adjust itself to different sequence lengths or time windows that are  based on run-time information. A low-rate Distributed Denial of Service attack is substantially different from a high-rate Distributed Denial of Service attack which is considered to be the traditional type of Distributed Denial of Service attack. A few number of researchers have proposed several detection schemes against Distributed Denial of Service type of attack. Sun et al. proposed a distributed detection mechanism that is used as a dynamic time warping method for identifying the presence of the low-rate attacks, then a fair resource for the allocation mechanism will be used to minimize the affected flows in number. However, this method can lose the legitimate traffic to some extent Shevtekar et al. gave a light-weight data structure to store the necessary flow history at edge routers to detect the low-rate TCP DoS attacks. Although this method can detect any  periodic pattern in the flows, it may not be scalable and can  be deceived by the IP address spoofing. Chen et al. Present a collaborative detection of DDoS attacks. While focusing on detection rate, it is difficult for this scheme to differentiate the normal flash crowds and real attacks. As it heavily relies on the normal operation of participating routers, the false  positives will increase if the routers are compromised. Zhang et al. propose to use self-similarity to detect low-rate DDoS attacks. While the approach is claimed to be effective, the  paper does not use real scenario data to evaluate it.Kullback– Leibler divergence, as a well-known information divergence, has been used by researchers to detect abnormal traffic such as DDoS attacks. The difference between previous work and our research is that we are the first to propose using information divergence for DDoS attack detection. Information divergence, as the generalized divergence, can deduce many concrete divergence forms according to different values of order. For example, when, it can decipher the Kullback–Leibler divergence. It is very important and significant that we can obtain the optimal value of divergence between the attack traffic and the legitimate traffic in a DDoS detection system  by adjusting the value of order of information n divergence. In addition to this, we also study the properties of Kullback– Leibler divergence and information divergence in theory and overcome their asymmetric property when used in real measurement. We successfully convert the information divergence into an effective metric in DDoS attack (including both low-rate and high-rate) detection. V. CONCLUSION In this paper we described different techniques which are for the prevention of the denial of service attacks. A new methodology along with the existing packet marking technique was proposed. The information contains the lifetime of the packet. The traceback process an accurate one. As the proposed metrics can increase the information distance among attack traffic and legitimate traffic. Those lead to detect low-rate DDoS attacks fast and reduce the false positive rate accurately. This information distance metric overcomes the properties of asymmetric of both Kullback-Leibler and information divergences. IP traceback scheme based on information metrics can effectively trace all attacks including LANs (zombies). Our  proposed information metrics improve the performance of low-rate DDoS attacks detection and IP traceback over the traditional approaches. Source: http://www.scribd.com/doc/226717154/Detecting-Constant-Low-Frequency-Appilication-Layer-Ddos-Attacks-Using-Collaborative-Algorithms

Taken from:
Detecting Constant Low-Frequency Appilication Layer Ddos Attacks Using Collaborative Algorithms

DDoS attacks using SNMP amplification on the rise

Attackers are increasingly abusing devices configured to publicly respond to SNMP (Simple Network Management Protocol) requests over the Internet to amplify distributed denial-of-service attacks. This amplification technique, which is also known as reflection, can theoretically work with any protocol that is vulnerable to IP (Internet Protocol) address spoofing and can generate large responses to significantly smaller queries. Attackers can craft requests that appear to originate from the IP address of their intended victim in order to trick servers that accept requests over such protocols from the Internet to flood the victim with data. Many DDoS attacks in the past year have used misconfigured DNS (Domain Name System) and NTP (Network Time Protocol) servers for amplification. However, devices that support SNMP, a protocol designed to allow the monitoring of network-attached devices by querying information about their configuration, can also be abused if the SNMP service is directly exposed to the Internet. SNMP-enabled devices with such configurations can be found both in home and business environments and include printers, switches, firewalls and routers. Since April 11, the Prolexic Security Engineering Response Team (PLXsert), which is now part of Akamai Technologies, has identified 14 separate DDoS campaigns that used SNMP reflection. Almost half of the malicious SNMP reflected traffic came from IP addresses in the U.S. and 18 percent from China, PLXsert said in a threat advisory published Thursday. “The attacks targeted clients in the following industry verticals: consumer goods, gaming, hosting, non-profits and software-as-a-service (SaaS).” One of the tools used to launch the recent attacks was created in 2011 by a hacker group called Team Poison and can send spoofed SNMP GetBulk requests to publicly accessible SNMP-enabled devices to trigger responses that can be more than 1,700 times larger than the requests, the Prolexic team said. The attackers crafted their requests to have a source port of 80—usually assigned to HTTP—so that vulnerable devices return their SNMP responses to the victims on the same port, flooding their HTTP services. “Until approximately three years ago, SNMP devices were manufactured using SNMP version 2 and were commonly delivered with the SNMP protocol openly accessible to the public by default,” PLXsert said. “Devices using SNMP v3 are more secure. To stop these older devices from participating in attacks, network administrators need to check for the presence of this protocol and turn off public access.” Information over SNMP is controlled by a so-called community string, which in the case of SNMP v2c is “public” by default, PLXsert said. SNMP amplification attacks are not really new, said Sean Power, security operations manager at DDoS protection vendor DOSarrest Internet Security, Friday via email. “Legitimate SNMP traffic has no need to leave your network and should be prevented from doing so. This attack exists because many organizations fail to prevent this.” It’s important for network owners to lock down services that can be used for DDoS reflection and amplification like DNS, SNMP, NTP and voice over IP. This “is part of being a good citizen of the Internet,” said Tom Cross, director of security research for network security and performance monitoring vendor Lancope, via email. Source: http://www.pcworld.com/article/2159060/ddos-attacks-using-snmp-amplification-on-the-rise.html

View original post here:
DDoS attacks using SNMP amplification on the rise

SNMP DDoS Attacks Spike

No botnet necessary: Yet another flavor of distributed denial-of-service (DDoS) attacks that doesn’t require infecting PCs is on the rise. Akamai’s Prolexic Security Engineering and Response Team (PLXsert) today issued a threat advisory warning of a spike in DDoS attacks abusing the Simple Network Management Protocol (SNMP) interface in network devices such as routers, switches, firewalls, and printers. PLXsert has spotted 14 SNMP DDoS attack campaigns over the past month, targeting various industries including consumer products, gaming, hosting, nonprofits, and software-as-a-service, mainly in the US (49.9%) and China (18.49%). The attackers used a tool that’s available online and was developed by the infamous hacker group Team Poison. This latest wave of attacks targets devices running an older version of SNMP, version 2, which by default is open to the public Internet unless that feature is manually disabled. SNMP version 3 is a more secure version of the management protocol, which is used to store device information such as IP address or even the type of toner used on a printer. “Through the use of GetBulk requests against SNMP v2, malicious actors can cause a large number of networked devices to send their stored data all at once to a target in an attempt to overwhelm the resources of the target,” PLXsert says in the advisory. “This kind of DDoS attack, called a distributed reflection and amplification (DrDoS) attack, allows attackers to use a relatively small amount of their own resources to create a massive amount of malicious traffic.” The attacks are using the Team Poison-built tool to automate the “GetBulk” requests. They then use the IP address of the organization they are targeting as the spoofed source of the requests. The attacker then sets off a bulk request for SNMP devices. “These actions will lead to a flood of SNMP GetResponse data sent from the reflectors to the target. The target will see this inflow of data as coming from the victim devices queried by the attacker,” the advisory says, and the attacker’s actual IP address is hidden. David Fernandez, director of the PLXsert team, says this reflection technique, as with NTP reflection attacks, is popular because it’s a way to maximize connections without a botnet, and it’s cheaper to perform. “They can perform campaigns without infections,” Fernandez says. “Unfortunately, the attackers are victims,” such as the duped devices responding to the targeted organization’s network. “These are pretty massive attacks,” he says. “SNMP has a high amplification factor.” The attacks are more than mayhem: Increasingly, DDoS attacks such as these are being used as a smokescreen to divert from a real more deadly attack, he says. Fernandez declined to speculate on the motivation behind these specific attacks. “The use of specific types of protocol reflection attacks such as SNMP surge from time to time,” said Stuart Scholly, senior vice president and general manager of Akamai’s Security Business Unit, in a statement. “Newly available SNMP reflection tools have fueled these attacks.” Source: http://www.darkreading.com/attacks-breaches/snmp-ddos-attacks-spike/d/d-id/1269149

Read the original:
SNMP DDoS Attacks Spike

Australian Labor Party and the Bob Brown Foundation hit by DDoS attack

Inadvertent victims of “politically motivated” hack. A politically motivated DDoS attack on a US-based web hosting service has delivered global repercussions affecting a number of Australian websites including the homepages of the Australian Labor Party and the Bob Brown Foundation. Both organisations use the services of NationBuilder, a cloud-based web hosting and customer relationship management platform designed specifically for nonprofits, political parties and politicians. The ALP.org.au website was down for a few hours yesterday morning, its Canberra HQ confirmed. The Bob Brown Foundation site was also down yesterday and then again last night, said organiser Steven Chaffer, who had been contacted by a NationBuilder account rrepresentative. The state branches of the Labor Party also use NationBuilder, as does Victorian independent MP Cathy McGowan and the community services union United Voice. United Voice said it was not aware of any disturbance to its web presence. Yesterday NationBuilder was hit by a DDoS attack it believes to have been in protest against the political stance of one of its clients. “We are reasonably certain the attack is directed at one of our customers for their political beliefs, and is meant to disrupt upcoming elections,” wrote CEO Jim Gilliam on the NationBuilder website early this morning Australian time. He said the attack has caused “intermittent service outages” for the company’s clients but assured users that data and financial information was never exposed. “We know the impact is immeasurable and we are very, very sorry,” he said. “We are fiercely committed to serving all of our customers. Everyone has the right to organise – in fact, this is the very reason NationBuilder exists.” NationBuilder has not responded to iTnews’ requests to confirm the identity of the targeted client. However posts on the Anonymous hackers forum and from the self-professed antagonist on Twitter claim that the attack is targeting the British political party UKIP, which is taking its anti-immigration policy platform to elections for the UK membership of the European Union next week. The party’s leader Nigel Farage has been a controversial figure, branded as a racist by the UK Labor party. UKIP has been the subject of DDoS attacks before, and its website was one of many down intermittently yesterday and into today. Australian clients told iTnews that their services have now resumed. Source: http://www.itnews.com.au/News/386077,alp-bob-brown-sites-downed-by-ddos.aspx?utm_source=feed&utm_medium=rss&utm_campaign=editors_picks

View the original here:
Australian Labor Party and the Bob Brown Foundation hit by DDoS attack

Dating Website Plenty Of Fish Hit By DDoS Attack

Add Plenty of Fish to the list of technology companies whose websites have come under DDoS attacks from unknown cybercriminals in recent days. The company says that it was the victim of a five-hour attack today that affected approximately 1 million users. Initially, the attacks took down the Plenty of Fish website, then later the company’s mobile apps on iPhone, iPad and Android. As per the usual M.O., the attacker first contacted the site to warn them of the impending DDoS at 6:45 AM PT, then the attack started at 8:13 AM PT where it continued for several hours, off and on. The company says it was only recently able to mitigate the flood, and is now fully up and running again. The attack was 40 Gigabits in size, which makes it larger than the attack which took Meetup.com offline for nearly five days last month – that attack was “only” 8 GBps, the company had said at the time. These DDoS attacks (distributed denial-of-service attacks) have become more powerful as of late, thanks to the way attackers are exploiting older internet protocols like Network Time Protocol, or NTP, to increase their size. That seems to be the case here, given the size of the attack that Plenty of Fish suffered. Other companies that have been attacked more recently include TypePad, Basecamp, Vimeo, Bit.ly, and as of this past weekend, marketing analytics software provider Moz, to name just a few. In Plenty of Fish’s case, the attacker demanded $2,000 to have them stop the attack. Want to know if your company is about to have a bad day? Look for an email like this: From: dalem leinda Date: Tue, May 20, 2014 at 12:09 PM Subject: Re: DDoS attack, warning If you feel ready to negotiate, I’m still here. For something around $2k, I will stop the current attack and I will not resume further attacks. The amount depends on how quickly you can make the payment. Source: http://techcrunch.com/2014/05/20/dating-website-plenty-of-fish-hit-by-ddos-attack/?ncid=rss

Read more here:
Dating Website Plenty Of Fish Hit By DDoS Attack

DOSarrest Rolls Out Cloud Based Layer 7 Load Balancing

DOSarrest has begun offering a Cloud based Layer 7 local and global Load balancing solution to its DDoS protection services customer base. The Load balancing service is a fully managed solution, whereby customers can create pools of servers; a pool can be 1 or many servers and can be located in multiple locations. Load balancing types available include: Round Robin, IP Hash, least connections, weighted. Other options include: By Domain or Host Header, allows customers to direct our servers to pick-up and cache content based on the domain name or host header that is being requested by the visitor. By Resource, allows customers to direct our servers to pick-up and cache content based on the resource being requested by the visitor. Mydomain.com goes to one server(s) mydomain.com/images goes to another server(s) and/or location. The load balancing solution also can be used as Active/Active -All servers are is use Or Active/Passive -some servers are only used when one or more have a failure. Health checks are all part of the service to determine if a particular server or instance is active or not. Jag Bains, CTO at DOSarrest comments “I used to be in the hosting game and when I see the advantages of our cloud based solution over a hardware based solution, this is definitely the way to go.” Bains also adds “There is no capital required, no technical expertise is needed, no single point of failure, it’s able to handle 100?s of millions of requests and can be setup in 5 minutes…top that.” General Manager at DOSarrest, Mark Teolis states “It’s a natural add-on to our DDoS protection services, which already incorporates extensive caching of customers content, this way customers can leverage any combination and location of VPS’s, Instances, private cloud and dedicated servers. I can’t see why anyone would want to buy or manage a Load balancing device again, it just doesn’t make sense anymore.” Details on this service can be found here: www.dosarrest.com/solutions/load-balancing/

See original article:
DOSarrest Rolls Out Cloud Based Layer 7 Load Balancing

TypePad Claims It Was Hit By Another DDoS Attack

A number of technology companies, including Meetup, Basecamp, Vimeo, Bit.ly and others, have undergone website-crashing DDoS attacks (distributed denial-of-service) in recent months, but SAY Media-owned blogging platform Typepad, apparently, has the dubious honor of being taken down for an extended outage more than once in just a few weeks. The company has confirmed to us this morning that it is again undergoing another DDoS attack, which has taken its service offline. However, until all the facts are in and TypePad can provide more info about the nature of this attack, which right now it’s unable to do, it’s unclear at this time that this morning’s network outage is definitely a DDoS attack — the same as before. Because it’s still early in the investigation, it’s possible the company is presuming a DDoS attack, where only a network outage was at fault. We’ll update when we — and they — know more. However, when asked around an hour ago, TypePad did say that it was indeed “under a DDoS attack.” In April, we reported that Typepad was undergoing an extended DDoS attack, which, at the time, had been underway off and on for nearly five days. The company explained that the attack was similar in style to that which had taken down Basecamp, and confirmed that it was working with technology providers, including CloudFlare and Fastly to help mitigate the attack and bring its service back online. Though TypePad never shared extensive technical details about the DDoS attack, the typical scenario — and one that Basecamp had faced, as well — involves an initial demand for some sort of “ransom” once the site and its related services have been knocked offline. The amount first requested is usually small, but once attackers know they have a willing victim, they’ll often increase the amount. SAY Media said it had also received a “ransom” note, and was cooperating with the FBI on an investigation. According to Paul Devine, VP of Engineering at Say Media, this new Typepad attack began at 6:00 AM PT and the company is again working with CloudFlare and Fastly to mitigate the situation. “[We] don’t expect these attacks to have longevity,” he tells us. “We’re looking forward to having the sites up and running as quickly as we can.” As of a few minutes ago, the company tweeted that blogs were loading. However, at the same time, the URL http://www.typepad.com was still largely crashed when we tried it ourselves. That is, instead of loading up properly, CloudFlare is providing a snapshot of the site through its “Always Online” service, which helps sites offer a webpage instead of an error message when taken down through cyberattacks like this. The www.saymedia.com website address came up, however, though a bit slowly. (SAY Media operates a number of brands, including ReadWrite, xoJane, Fashionista, Cupcakes and Cashmere, and others.) The site loads but a “fatal error” message appears at the bottom of the page. Thanks to newer, more powerful types of DDoS attacks that have emerged as of late, attacks that once would have been thought to be record-breaking in size are now becoming routine. For instance, Meetup’s attack was 8 Gigabits in size, and it’s not uncommon for NTP-based DDoS attacks (which exploit an older protocol called Network Time Protocol) to be 10 Gigabits in size. However, one side effect of these attacks is that when a company later experiences a network outage, they sometimes immediately presume that they’re being attacked again. It can be difficult to tell the difference, especially in the early hours of these sorts of situations. We’ll be looking for TypePad to provide its customers with a longer post-mortem following this morning’s outage. Given multiple attacks over the course of several weeks, the company has a responsibility to let their customers know whether or not they’re being targeted by criminals, or if unrelated network outages came into play this morning instead. Source: http://techcrunch.com/2014/05/19/typepad-claims-it-was-hit-by-another-ddos-attack/?ncid=rss

Continued here:
TypePad Claims It Was Hit By Another DDoS Attack

SNMP could be the future for DDoS attacks

DNS amplification and NTP reflection are two big buzz-terms in the modern world of distributed denial-of-service (DDoS) attacks, but when successful defensive measures force those wells to run dry, a lesser-used reflection attack vector, known as Simple Network Management Protocol (SNMP), could take the forefront. Johannes Ullrich, dean of research with the SANS Technology Institute, told SCMagazine.com in a Monday email correspondence that SNMP, a UDP-based protocol used to read and set the configurations of network devices, hasn’t posed as big a threat as DNS and NTP attacks because there are not as many reflectors available as there are for other protocols. Ullrich said that most network-connected devices support SNMP in some form and, in a Thursday post, opined that it could be the next go-to vector for attackers after he observed a DDoS reflection attack taking advantage of an unnamed video conferencing system that was exposing SNMP. In this instance, the attacker spoofed a SNMP request to appear to originate from 117.27.239.158, Ullrich said, explaining that the video conferencing system receives the request and then replies back to the IP address with a significant reply. An 87 byte “getBulkRequest” resulted in a return of 60,000 bytes of fragmented data, Ullrich wrote in the post, adding that the individual reporting the attack observed roughly five megabits per second of traffic. “The requests are pretty short, asking for a particular item, and the replies can be very large,” Ullrich said. “For example, SNMP can be used to query a switch for a list of all the devices connected to it. SNMP provides replies that can be larger than DNS or NTP replies.” As people improve configurations, effectively causing those DNS and NTP reflectors to dry up, SNMP could be the attack vector of choice, Ullrich said – a point that John Graham-Cumming, a programmer with CloudFlare, agreed with in a Monday email correspondence with SCMagazine.com. “I think that attackers will turn to SNMP once other attack methods are thwarted,” Graham-Cumming said. “At the moment it’s easy to use NTP and DNS for attacks, so there’s no need for SNMP.” To get a jumpstart defending against this DDoS vector, Graham-Cumming suggested that network operators limit access to the SNMP devices on their networks. Ullrich went so far as to say that SNMP devices should not be exposed to the internet at all. Both experts added that the “community string,” which serves as a password for accepting requests, should not be so obvious. Source: http://www.scmagazine.com/snmp-could-be-the-future-for-ddos-attacks/article/346799/

Link:
SNMP could be the future for DDoS attacks

Point DNS blitzed by mystery DDoS attack assault

Domain hosts Point DNS has been hammered with a high intensity DDoS attack on Friday, knocking servers out for hours. The size of the attack and techniques used – much less who might be behind the attack – remains unclear. Several Reg readers got in touch to notify us about the issue and the company confirmed the attack online. “We’re experiencing a DDoS attack on all DNS servers we are working hard mitigate the attack,” Point DNS said in a update to its Twitter profile. “We’re still working through a massive DDoS. We’re adding more nameservers and working with our network providers,” it added. The firm, whose services are used by more than 220,000 domains, was badly affected by the attack. This had a knock-on effect on firms who used its services – while websites were up and running as normal attempts to reach them by typing in a name to a browser would not resolve as normal. The snafu also means email won’t be delivered as normal to affected sites, with early indications suggesting clients clustered in Asia and Europe were worst affected. Security specialists Incapsula spotted a similar attack, which peaked at 25 million packets per second. It reported seeing floods of non-spoofed IP data coming from two DDoS protection services as the cause of the outage. “DNS flood have been around for a while but now the modern high-capacity servers take the attack to a new level,” Incapsula product evangelist Igal Zeifman told El Reg in a statement. “Unlike amplification attacks, that could be easily spotted and filtered on-edge, DNS flood queries can’t be dismissed before they could be allowed to be processed by the server. With powerful botnet machines pumping millions of malicious request each second, and aiming them directly and the most vulnerable server resources (eg CPU), the old threat is now making a comeback in a very dangerous manner.” Source: http://www.theregister.co.uk/2014/05/09/point_dns_ddos/

More:
Point DNS blitzed by mystery DDoS attack assault

DDoS attacks: half of targeted firms get hit again

Two new reports reveal that DDoS attacks are not only getting bigger- now logged between 250 and 325 Gbps, but that these attacks often target the same organisation more than once. The business challenge presented by DDoS attacks hit the spotlight once again this morning, after a research analytics firm revealed that 35 per cent more firms were hit by attacks during 2013 than in 2012 – and with 28 per cent of logged attacks seen last years lasting two days or more.   The most revealing takeout from the Neustar analysis – the firm’s second annual report, entitled `DDoS Attacks & Impact Report – 2014: The Danger Deepens’ – is that once attacked, there is an estimated 69 percent chance of a repeat attack.   And whilst 31 per cent of these companies were DDoS-attacked once, over 48 percent said they had been targeted between two to 10 times.   Neustar’s figures confirm Arbor Networks’ report – released last week – which saw a record 325 Gbps attack hit a French organisation earlier this year, with a massive spike logged by the research division of the DDoS remediation firm on the first quarter of this year.   Arbor says that it 72 attacks larger than 100 Gbps in size and volume, as well as 50 percent more attacks in the first quarter of 2014 than the entirety of 2013.   Back at Neustar, the research company claims that 32 percent companies hit by a DDoS attack last year estimated the events had cost them more than £240,000 per day during the outage. Additionally, the reports notes larger DDoS attacks are becoming more frequent with a 200 percent increase in attacks affecting bandwidth of between 1 and 20 Gbps.   For its research, Neustar took in response from 331 companies in the UK, across a range of public and private sector organisations. The company says its results show that DDoS attacks disrupt multiple business units – with public-facing areas like call centres, customer service and marketing operations absorbing more than 40 per cent of DDoS-attack related costs.   This high cost may because these business functions are key revenue earners in most commercial companies, SCMagazineUK.com notes, but the report also cautions that DDoS attacks are now being used as smokescreens for other attacks – an attack vector that security researcher Brian Krebs has reported on several times over the last 12 months.   Rodney Joffe, Neustar’s senior VP and technology fellow, said that organisations must remain constantly vigilant and abreast of the latest threats.   “As an example, Neustar’s UltraDNS network suffered an attack just last week peaking at over 250 Gbps – a massive attack by industry standards. Even with proper mitigations in place, the attack caused an upstream ripple. It is a constantly changing threat landscape,”he noted.   According to Mark Teolis, general manager with DOSarrest, a DDoS remediation specialist, the key problem with the latest generation of attacks is not just the volume and bandwidth used, but their general sophistication, with Layer 7 attacks now being seen in the mainstream.   Layer 7 is the highest of the seven IP layers defined under the OSI (Open System Interconnection) model and represents the application layer – the location on the computing resource where data both originates and returns.   Speaking with SCMagazineUK.com last week at the Infosecurity Europe show, Teolis said his firm’s latest software has been enhanced to deal with these latest Layer 7 attacks, by combining IDS (intrusion detection systems), load balancing, WAF (web application firewall) and DDoS mitigation under a single IT umbrella.   Using an IDS, he explained, allows security professionals to pinpoint sophisticated layer 7 attacks, as well as provide cloud based WAF services.   “Using these approaches – coupled with spreading the load across multiple cloud resources – significantly mitigates the effects of even the highest volume DDoS attack,” he said.   Keith Bird, UK managing director with Check Point, told SCMagazineUK.com that DDoS attacks have been used as a hacktivist weapon for several years – and, as this research illustrates, now the net is widening to businesses at large.   “We are seeing smokescreen-type attacks, and also more complex, multi-vector attacks on Web sites that combine DDoS with account tampering and fraud attempts,” he said adding, that, whilst these are difficult to defend against, firms should consider contingency and remediation plans in the event of such attacks. Source: http://www.scmagazineuk.com/ddos-attacks-half-of-targeted-firms-get-hit-again/article/345878/

See original article:
DDoS attacks: half of targeted firms get hit again